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Abstract
In virtualized environments, oversubscribing virtual CPUs
(vCPUs) on physical CPUs (pCPUs) is common to utilize
CPU resources efficiently. Unfortunately, excessive vCPU
spinning, which occurs when a vCPU is waiting in a spin
loop for an event from a descheduled vCPU, causes serious
performance degradation. Usually, the VM-agnostic hypervi-
sor tries to prevent excessive vCPU spinning by rescheduling
vCPUs when an excessive spin is detected by hardware sup-
port for virtualization.
This paper investigates the effectiveness of KVM vCPU

scheduler and shows it fails to avoid excessive vCPU spin-
ning in many opportunities. Our in-depth analysis reveals
simple modifications to KVM (41 LOC) improve the mitiga-
tion of excessive vCPU spinning. We have identified three
problems: 1) scheduler mismatch, 2) lost opportunity, and
3) overboost. The first problem comes from the mismatch
between the KVM vCPU scheduler and the Linux scheduler.
The second and third problems come from an inefficient algo-
rithm for choosing the next candidate vCPU to be scheduled.
Our simple modifications gracefully resolves the problems
and the performance improves by up to 80 %. Our results im-
ply the VM-agnostic hypervisor can resolve excessive vCPU
spinning more gracefully than previously believed.

CCS Concepts: • Software and its engineering; •Virtual
machines;

Keywords: Virtualization, Hypervisor
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1 Introduction
Virtualization is widely used in cloud computing platforms.
To improve hardware utilization and reduce energy con-
sumption, the cloud providers are striving to oversubscribe
hardware resources, consolidating multiple virtual machines
(VMs) on a single physical machine. However, oversubscrip-
tion does not come for free: it requires multiplexing of virtual
CPUs (vCPUs) on physical CPUs (pCPUs).
Even more, oversubscription violates an underlying as-

sumption of the operating system (OS) design: OSes assume
all the CPUs to be active, and even if halted, they can respond
to interrupts immediately. If pCPUs are oversubscribed, the
execution of vCPUs are preempted by the hypervisor to
schedule vCPUs, and vCPUs are not always active or cannot
respond to interrupts immediately. The violation of the OS
design assumption results in a well-known problem of exces-
sive vCPU spinning [1, 2, 5, 7, 9, 11, 12, 23–25, 27–30, 33, 37–
39, 41]. Excessive vCPU spinning occurs when a vCPU is
waiting in a tight loop for an event that a descheduled vCPU
will cause. An event-waiting vCPU spins in a tight loop un-
til an event-sending vCPU is scheduled by the hypervisor.
Excessive vCPU spinning comes from many variants of the
scheduling problems: 1) lock-holder preemption (LHP) [33],
2) lock-waiter preemption (LWP) [23], and 3) delayed re-
sponse to interrupts.
Excessive vCPU spinning is hard to solve in VM agnos-

tic hypervisors. It stems from a semantic gap between the
hypervisor and guest OSes, and the hypervisor is ignorant
of the contexts in which a vCPU is running. To mitigate the
problem of excessive vCPU spinning, recent hardware sup-
port for virtualization supports the detection of long-running
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tight loops. When an excessive spinning is detected, a pro-
cessor raises an event called Pause Loop Exit (abbreviated as
PLE) [26], and the control is transferred to the hypervisor.
The hypervisor reschedules vCPUs to solve the root cause
of excessive spinning.
Recent hypervisors such as KVM [13] have incorporated

a mechanism to mitigate excessive vCPU spinning. It is ex-
pected that excessive vCPU spinning is not an issue anymore
in current hypervisors.When a PLE event occurs in the guest,
KVM boosts vCPUs that can be the root cause of the excessive
spinning, and attempts to schedule event-sending vCPUs as
soon as possible. In spite of the mitigation against the exces-
sive vCPU spinning, KVM still suffers from non-negligible
overheads due to the excessive spinning. Performance of
some benchmarks is degraded up to 45 % in our evaluation.
PLE events are raised continuously more than 600 times at
the same code location in the guest, although KVM attempts
to resolve the root cause at every PLE event.
Our in-depth analysis reveals the KVM vCPU scheduler

fails to solve the excessive spinning for three reasons: 1)
scheduler mismatch, 2) lost opportunity, and 3) overboost.
Scheduler mismatch is peculiar to integrated hypervisors
where the host OS scheduler schedules other threads, based
on its own policy, together with vCPUs without any dis-
tinction. To mitigate excessive vCPU spinning, the vCPU
scheduler gives a hint on vCPU scheduling to the host OS
scheduler. Scheduler mismatch occurs if the scheduling hints
are eventually ignored by the host OS scheduler, probably
because the hints contradict the host scheduling policy. This
problem is not restricted to KVM. The semantic gap between
the vCPU scheduler and the host OS scheduler can lead to
a similar problem in VirtualBox [22] and VMware worksta-
tion [36]. Although both hypervisors delegate vCPU schedul-
ing to the host, they do not adjust vCPU priorities to mitigate
the excessive spinning.

Lost opportunity and overboost are caused by the semantic
gap between the guest operating system and the hypervisor.
Since the vCPU scheduler cannot know exactly which vCPU
to be boosted to mitigate the excessive spinning, it some-
times gives false hints to the host scheduler; it sometimes
misses the opportunities to boost vCPUs, which is called
lost opportunity, or falsely boosts vCPUs that should not be
boosted, which is called overboost. It is not straightforward
to select the candidate vCPUs for boosting because of the se-
mantic gap; the hypervisor must carefully collect thin shreds
of information to infer root causes of excessive spinning.
To compensate for the negative impact of scheduler mis-

match, lost opportunity, and overboost, we have modified
the KVM vCPU scheduler to incorporate 1) vCPU debooster
and 2) strict vCPU boosting. The vCPU debooster mitigates
the scheduler mismatch problem by lowering the priority
of the vCPU preempted by PLE. Since lowering the priority
does not interfere with other high-prioritized threads in the
host, the host scheduler is less likely to ignore the hint of

lowering the priority. The strict vCPU boosting mitigates the
lost opportunity and overboost. It collects the information
on IPI senders and receivers, and strictly boosts IPI receivers
only when necessary.
Our evaluation results show that 1) for PLE-intensive

benchmarks, our modified KVM gracefully improves the
performance by up to 80 %, 2) for less PLE-intensive bench-
marks, the performance is not degraded compared with the
baseline KVM, and 3) the fairness of scheduling is not com-
promised by introducing the debooster and the strict boost.

The paper is organized as follows. Section 2 demonstrates
KVM suffers from non-negligible overheads due to contin-
uous PLE occurrences. Section 3 analyzes the root causes
of continuous PLE occurrences. Section 4 presents our mit-
igation against scheduler mismatch, lost opportunity, and
overboost. Section 5 shows the evaluation results. Section 6
relates our work to others, and Section 7 concludes the paper.

2 Background and Motivation
Excessive vCPU spinning is a widely known problem that
has been thoroughly addressed by research and development
communities [1, 2, 5, 7, 9, 11, 12, 16, 23–25, 27–30, 33, 37–
39, 41]. Modern hypervisors such as KVM have incorporated
solutions to excessive vCPU spinning, and it is expected
that excessive vCPU spinning is not an issue anymore. Un-
fortunately, as we show in this section, KVM fails to solve
excessive vCPU spinning comprehensively; it still suffers
from non-trivial overheads due to excessive vCPU spinning.

2.1 Excessive vCPU Spinning
In consolidated environments, virtual CPUs (vCPUs) share a
limited number of physical CPUs (pCPUs) to utilize the re-
sources efficiently. Guest operating systems (OSes) are given
an illusion that their (virtual) CPUs are running continu-
ously but in reality their executions are interrupted by the
hypervisor to schedule vCPUs. This interrupted execution of
vCPUs violates the assumption of operating-system design:
the OSes assume all the CPUs to be active, and even if halted,
they can respond to interrupts quickly.
The violation of this underlying assumption results in

a well-known problem of excessive vCPU spinning in VM
agnostic hypervisors; a vCPU spins for a long time without
making any progress. Excessive vCPU spinning typically
happens in two scenarios. First, if a vCPU holding a spin lock
is scheduled out by the hypervisor, another vCPU waiting
for the spin lock cannot make any progress until the lock
holding vCPU is re-scheduled. This problem is called the
LHP (lock holder preemption) problem [33]. Older versions
of Linux (until version 4.1) supported ticket spin locks in
which a lock is acquired in requesting order. Recent Linux has
dropped the support because the ticket spin lock amplifies
the problem of vCPU spinning [32]. A vCPU waiting for
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a ticket spin lock cannot make any progress until all the
vCPUs preceding it in ticket requesting order are scheduled.

Second, inter-processor interrupts (IPIs) cause excessive
vCPU spinning. If a vCPU is not scheduled when an IPI is
sent to it, it cannot receive it immediately and the inter-
rupt handling is delayed. For example, TLB shootdown is
implemented with IPIs. When a processor updates a page
table, it sends IPIs to other processors and waits for acknowl-
edgements. This wait is implemented with a spinning loop
because the acknowledgement is sent back immediately on
a bare-metal machine. If a recipient vCPU is not scheduled,
the acknowledgement is delayed until it is re-scheduled. This
delay makes the IPI sender to spin excessively.
To mitigate vCPU spinning, the hardware-level support

for virtualization provides the function to detect excessive
vCPU spinning and enable the hypervisor to re-schedule
vCPUs. Modern processors are equipped with a special in-
struction (PAUSE instruction in Intel x86) that gives a hint
to the processor that the code is in a spinning loop. The use
of PAUSE instructions in a spinning-loop is strongly rec-
ommend by Intel to avoid the memory order violation and
unnecessary pipeline flushes.

The Pause Loop Exiting (PLE) [26] hardware assist feature
of Intel x86 processors checks the interval between consec-
utive PAUSE instructions performed in kernel mode. If the
interval is shorter than PLE_gap, a pre-defined parameter,
the vCPU is considered to be spinning. If the spinning con-
tinues beyond another pre-defined parameter, PLE_window,
a VM-Exit is triggered to transfer control to the hypervisor,
which de-schedules the spinning vCPU and schedules an-
other vCPU. AMD supports PF (Pause Filter) [3] which is
essentially the same as PLE. This paper focuses on PLE but
can be applied to PF as well.

2.2 KVM Solution
To leverage existing kernel functionalities, some hypervisors
are integrated with a host OS kernel. The integrated hyper-
visor schedules vCPUs in collaboration with the host OS
scheduler [21, 35]. For example, KVM is integrated with the
Linux kernel and thus KVM vCPU scheduler cooperates with
the Linux scheduler. Instead of scheduling vCPUs directly,
KVM gives some hints to the Linux scheduler so that it can
prioritize or deprioritize vCPUs appropriately. A vCPU given
higher priority by KVM is called a boosted vCPU.
By making use of this mechanism, KVM mitigates exces-

sive vCPU spinning. KVM de-schedules a vCPU that caused
PLE and chooses another vCPU to boost, expecting that
the boosted vCPU resolves the root cause of the PLE. KVM
chooses a boosted vCPU based on the candidate vCPU se-
lection [25]. Originally the vCPU candidate selection was
designed only for the LHP problem (Linux version ≤ 5.2) [19].
Recently it has been extended to reduce IPI latency (Linux
version ≥ 5.3) [17, 18].

0
1

5

26

4
3

7

✓

Last boosted vCPU

checked

selection

resource-
waiter

lock-
waiter

IPI-
receiver

not-
runnable

Figure 1. Candidate vCPU selection in KVM. Lock-waiter
vCPU3 (turned into “checked”) and non-runnable vCPU4
are skipped, and resource-waiter vCPU5 is boosted. Next,
lock-waiter vCPU6 is boosted because it is already checked.
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Figure 2.Worst-case scenario. vCPU0 is scheduled repeat-
edly by the Linux scheduler until vCPU7 is boosted.

Under the candidate vCPU selection, vCPUs are classified
into four categories: 1) resource-waiter, 2) lock-waiter, 3) IPI-
receiver, and 4) not-runnable. A resource-waiter is a vCPU
that has used up its time slice and waiting for another time
slice is assigned. A lock-waiter is a vCPU that has been
preempted because of PLE; a lock-waiter is waiting in a tight
loop for some event to happen. This name comes from the
fact that the original vCPU candidate selection was designed
solely for LHP. An IPI-receiver is a vCPU that has been halted
and an IPI has been sent to. A not-runnable is a vCPU that
has been halted but no IPI has been sent to.
KVM selects a vCPU that should be boosted next in the

round-robin fashion. The candidate vCPU selection consists
of two rounds. In the first round, KVM skips lock-waiter
vCPUs to avoid boosting a lock-waiter that is less likely to
make progress. In other words, KVM boosts the resource-
waiter and IPI-receiver vCPUs in turn in the first round. By
doing so, a resource-waiter vCPU is expected to cause an
event a lock-waiter vCPU is waiting for, or an IPI-receiver is
expected to acknowledge the pending IPI. Note that after the
boosted vCPU is preempted, the Linux scheduler chooses
another vCPU to run based on its own scheduling algorithm.
Figure 1 illustrates the candidate vCPU selection. All the

vCPUs in the same VM form a circle. When a vCPU exits
with PLE, KVM searches a candidate vCPU, following this
circle. If a vCPU next in this circle is a resource-waiter or
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Table 1. Benchmarks

Benchmark name Workload
mosbench.gmake Parallel build system
mosbench.psearchy In-memory parallel search & indexer
parsec.dedup Compression with deduplication
parsec.ferret Content-based similarity search
parsec.swaptions Pricing of a portfolio of swaptions
parsec.streamcluster Online clustering of input stream
parsec.vips Image processing
parsec.raytrace Real-time raytracing
pbzip2 Data compressor
dbench Filesystem I/O
ebizzy Common web application servers
hackbench Unix-socket or pipe stress

Table 2. Experimental Environment

Machine Dell PowerEdge R440
CPU 2.1GHz Intel Xeon Silver 4110
Core 8 cores (no hyperthreading)
Memory 64 GB
Host kernel Linux kernel 5.6.0
Guest OS Ubuntu 18.04 LTS
Guest kernel Linux kernel 4.15
Guest #vCPUs 8 vCPUs
Guest Memory 16 GB

IPI-receiver, it is selected to boost unconditionally. If it is
a lock-waiter, it is labeled as “checked” and then skipped
to avoid boosting a vCPU less likely to make progress. If a
lock-waiter is already labeled as “checked”, KVM selects it to
be boosted because all the vCPUs boosted after it caused PLE
and the root cause of PLE has been resolved. The “checked”
label is removed after the vCPU is boosted.
This design is expected to resolve the root cause of PLE

with, in the worst case, roughly 2×#vCPUs attempts to boost
vCPUs. Figure 2 shows the worst case where vCPU0 causes a
PLE event waiting for an event from vCPU7. Suppose vCPU7
is a lock-waiter. It will be boosted in the second round, and
thus there will be roughly 2 × #vCPUs attempts to boost
vCPUs until vCPU7 is boosted and the root cause of the PLE
event on vCPU0 is solved. Every time after each vCPU is
boosted, vCPU0 can be selected to run by the Linux scheduler
even though the root cause has not been resolved yet. In the
worst scenario, PLE events occur continuously on the same
vCPU (vCPU0 in this case) for 2 × #vCPUs times.

2.3 Ineffectiveness of KVM Solution
To confirm whether the KVM solution is effective or not, we
measure the number of PLE events on several benchmarks
shown in Table 1 on the experimental environment shown
in Table 2. We run two VMs on the same host: the first one
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Figure 3. Number of PLE events per second.

executes a benchmark shown in Table 1, and the other one
executes the CPU-intensive swaptions benchmark which
rarely causes PLE events.
Figure 3 shows the number of PLE events per second in

each benchmark in log scale. Some benchmarks show an
extremely large number of PLE events: vips, dedup, and
psearchy show respectively 42,000, 18,000, and 7,200 PLE
events per second. In the case of vips, a PLE event happens
every 50,000 cycles, corresponding to 23.8𝜇𝑠 on our machine.

To determine whether this high frequency of PLE events
is reasonable or not, we investigate how often PLE events
occur continuously in the benchmarks, that this to say if they
occur at the same code location on the same vCPU without
being interleaved with PLEs from other code locations or
VM exits other than PLE. If the candidate vCPU selection in
KVM works as expected, a sequence of continuous PLEs is
not longer than 2 × #vCPUs because the root cause should
be resolved after the two-round boosting of vCPUs.
Figure 4 shows the CDF of the length of continuous PLE

events in each benchmark. If the candidate vCPU selection re-
solves excessive vCPU spinning perfectly, the length should
not exceed 16 (8 vCPUs in our setting). However, we observe
that, except for ebizzy and raytrace, more than 50 % of the
PLE events come from continuous PLE events whose length
exceeds 16. Surprisingly, more than half of the PLE events
come from 100+ PLE events in a row in dbench, ferret, and
swaptions. A large proportion of all the PLE events occur
continuously once a PLE event occurs. This implies that
KVM candidate vCPU selection is not working properly.

3 Analysis of KVM Behaviors
In this section, we analyze KVM behaviors when it encoun-
ters PLE events and investigate the reason KVM vCPU sched-
uling causes continuous PLE occurrences.
We first identify the root causes of PLE events, and then

show a detailed analysis of KVM behaviors that fail to solve
PLE events. We have identified three issues: 1) scheduler
mismatch, 2) lost opportunity, and 3) overboost. Section 3.2
shows scheduler mismatch in which a vCPU boosted by the
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Figure 5. PLE reasons

KVM vCPU scheduler is not scheduled by the Linux CPU
scheduler. Section 3.3 shows lost opportunity and overboost in
vCPU re-scheduling. Figure 6 shows how often these three
cases occur in the benchmarks. Scheduler mismatch occurs
from 2.6 % to 64.7 % (17.7 % on average); lost opportunity
occurs from 0.0 % to 36.4 % (9.0 % on average); and overboost
occurs from 0.1 % to 7.3 % (3.3 % on average). PLE events are
handled successfully 70.0 % on average. Note that “success”
means the KVM vCPU scheduler succeeds to schedule a
vCPU other than the PLE-causing vCPU.

3.1 PLE Reasons
To solve excessive vCPU spinning quickly, the hypervisor
should take the PLE reason into account when it decides
which vCPU should be boosted. Spinning loops with PAUSE
instruction are ubiquitous in the kernel, and used for various

purposes. To decide which vCPU to be boosted, the vCPU
scheduler should identify the PLE reason and change the
criteria for vCPU selection for each reason. Because of the
semantic gap between the guest OS and hypervisor, PLE
events can not tell anything about the PLE reason. They sim-
ply detect excessive vCPU spinning and give the hypervisor
a chance to re-schedule vCPUs.

To investigate which kernel functions causes PLE, we trace
the guest VMs vCPUs’ instruction pointers. The instruction
pointer where a vCPU caused a PLE event is a good clue
to revealing why the vCPU is waiting for another one. For
instance, if a vCPU exits due to the native_queued_spin
_lock_slowpath function (a spinlock implementation in
Linux), the vCPU might be waiting for completion of a lock-
holder vCPU’s execution in a critical section.
Table 3 summarizes functions which cause PLE in the

Linux kernel and what those functions use PAUSE instruc-
tion for. The results show that reasons of PLE are three
functionalities in Linux: spinlock, TLB shootdown, and inten-
tional delay. Figure 5 shows the proportion of PLE events in
each benchmark whose root cause is spinlock, TLB shoot-
down, or intentional delay. Although the major PLE reason
differs from benchmark to benchmark, spinlock and TLB
shootdown are two major causes of PLE events, respectively
causing 8.8 % and 91.2 % of the PLE events on average. The
intentional delay is negligible (less than 0.1 %). As shown in
Figure 5, a major cause for PLE events in most of the bench-
marks is vCPU executing spinlock functions, in more than
53 % in 6 out of 12 benchmarks.
Another major cause of PLE events is TLB shootdown.

TLB shootdown is a kernel-level operation for TLB synchro-
nization. PLE events related to TLB shootdown are caused in
smp_call_function_many, which sends an inter-processor
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Table 3. PLE reasons and functions. “spinlock” includes low-
lever primitives used in higher-level synchronization primi-
tives such as semaphore

Function Functionalitiy
d_alloc_parallel spinlock
d_lookup spinlock
do_get_write_access spinlock
hrtimer_active spinlock
jbd2_journal_dirty_metadata spinlock
jbd2_journal_file_buffer spinlock
jbd2_journal_write_metadata_buffer spinlock
ktime_get spinlock
ktime_get_snapshot spinlock
ktime_get_ts64 spinlock
ktime_get_update_offsets_now spinlock
ktime_get_with_offset spinlock
mutex_spin_on_owner spinlock
native_queued_spin_lock_slowpath spinlock
osq_lock spinlock
path_init spinlock
queued_write_lock_slowpath spinlock
queued_read_lock_slowpath spinlock
rwsem_spin_on_owner spinlock
rwsem_down_write_failed spinlock
rwsem_down_write_failed_killable spinlock
tick_nohz_next_event spinlock
try_to_wake_up spinlock
smp_call_function_many TLB shootdown
smp_call_function_single TLB shootdown
delay_tsc Intentional delay

interrupt (IPI) to multiple cores. This function is not solely
for TLB shootdown but all the calls to it that caused PLE
events are for TLB shootdown. A PLE event can occur in this
function because a vCPU needs to wait for all other vCPUs
to flush their own TLBs if it flushes a remote TLB. This wait
is implemented with a spinning loop and can cause PLEs if
the vCPU receiving an IPI has been preempted by the vCPU
scheduler. PLE events caused by TLB shootdown occur in
more than 65 % in 6 out of 12 benchmarks.
Intentional delay refers to the case where the PAUSE in-

struction is used to insert a short delay by waiting spe-
cific cycles based on the timestamp counter. For example,
delay_tsc uses a spinning loop to insert a delay. As can be
seen from Figure 5, intentional delay is negligible and thus
we do not consider reducing its associated PLE events.

These results demonstrate that KVM still suffers from ex-
cessive vCPU spinning caused by the lock-holder preemption
(LHP) problem and TLB shootdown synchronization despite
attempts to mitigate their negative effects [17–19].
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Figure 6. Proportion of unsolved PLE events root causes.

3.2 Scheduler Mismatch
Scheduler mismatch is a problem that integrated hypervi-
sors can suffer from. In the integrated hypervisor, the vCPU
scheduler does not schedule their vCPUs directly. Instead,
it gives a scheduling hint to the host OS scheduler, which
schedules vCPUs based on its own scheduling policy, to-
gether with other threads in the host. Scheduler mismatch
occurs if the scheduling hint is eventually ignored by the
host OS scheduler. Since the host OS scheduler decides which
vCPU to be scheduled according to its own policy, it some-
times considers other vCPUs to be prioritized than the one
boosted by the vCPU scheduler.

According to Figure 6, scheduler mismatch with the Linux
scheduler is one of the root causes of continuous PLE events
in KVM. When a vCPU is boosted by the KVM vCPU sched-
uler, it is labeled as “boosted” in the Linux scheduler. The
default Linux scheduler, CFS (Completely Fair Scheduler),
does not always schedule it immediately in order to keep
the fairness among vCPUs (and other threads). It computes
“virtual runtime” for each vCPU (or thread) and schedules
the one with the lowest virtual runtime. The virtual runtime
is calculated by execution time/weight, where execution time
is the actual execution time in the previous time slice; CFS
prefers vCPUs running for a short time. If the boosted vCPU
virtual runtime is much larger than that of the vCPU with
the lowest virtual runtime, CFS chooses not to run it.

The virtual runtime of a vCPU causing a PLE event tends
to be small because its execution has been preempted by the
PLE. On the other hand, the virtual runtime of a boosted
vCPU can be large especially when a resource-waiter has
been boosted. Since the resource-waiter has used up its time
slice, its virtual runtime is large (the execution time is equal
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to the time slice). In the worst case, if the PLE-causing vCPU
happens to be in the same runqueue as the boosted vCPU,
it is chosen again to run and exits due to the PLE triggered
immediately after the rescheduling. Since its virtual run-
time remains small, it is rescheduled repeatedly, resulting in
continuous PLE events.

At first glance, there is no need to keep fairness between
vCPUs in the same VM. However, the host OS scheduler
cannot be aware of the vCPU semantics because it treats
vCPUs completely in the same way as other normal threads.
The host OS scheduler adheres to its scheduling algorithm
even if KVMmakes a request for boosting a vCPU or if vCPUs
are in the same resource management group (i.e. cgroup).

3.3 Lost Opportunity and Overboost
To remove the cause of a PLE event quickly, which vCPU
being scheduled after the PLE event occurs is important.
The candidate vCPU selection is a non-trivial task in VM-
agnostic hypervisors because of the semantic gap between
hypervisors and guest VMs.

Lost opportunity. As explained in Section 2.2, an IPI
receiver that has halted is always a candidate for a boost.
Thanks to this rule, hypervisors can suppress excessive spin-
ning due to TLB shootdown because IPI recipients can be
boosted even if they are halted. However, TLB shootdown
is still the major cause of PLE events in a couple of PLE-
intensive workloads as shown in Figure 3. This comes from
the fact that KVM vCPU scheduler was originally designed
to deal with the LHP (lock-holder preemption) problem. In-
tel x86 raises PLE events only when the guest is in kernel
mode, and thus only the spinlock waiter in the kernel can be
detected on Intel x86. Therefore, the KVM vCPU scheduler
wakes up vCPUs in kernel mode only (while the spinlock
holder is running in kernel mode). This assumption does not
hold for IPI recipients; they can be in either kernel or user
mode. If IPI recipients are in user mode, KVM vCPU sched-
uler does not wake them up even if they should respond to
IPIs. We refer to this problem as lost opportunity. Figure 6
shows the KVM vCPU scheduler does not boost any vCPU
due to lost opportunity on average in 9.0 % of all benchmarks.
The lost opportunity problem can lead to a large number of
continuous PLE events because the IPI sender causes PLE
events repeatedly until the recipient is scheduled while the
recipient is not candidate for a boost.

Overboost. Another possible problem arises if an IPI re-
ceiver that has halted is always a candidate for a boost. Sup-
pose that a vCPU exits due to PLE when it is waiting for the
lock-holder. The KVM vCPU scheduler should schedule the
lock-holder vCPU instead of the PLE-causing vCPU while
the lock-holder vCPU is never halted at the time because it is
executing in a critical section. However, if another vCPU has
sent asynchronous IPIs to a halted vCPU, the halted vCPU
is also candidate for the boost. This phenomenon introduces

unnecessary boosting and PLE events. We refer to this prob-
lem as overboost. Figure 6 shows the KVM vCPU scheduler
boosts the IPI recipient vCPU which has halted even if the
PLE-causing vCPU has not sent an IPI to the IPI recipient on
average in 3.3 % of all benchmarks.

3.4 Intentional Delay
As described in Section 3.1, the intentional delay is another
reason of continuous PLEs. Since the intentional delay is
not dominant in the benchmarks, we do not deeply discuss
solving this problem. One possible approach is to adjust
PLE_window to tolerate the delay.

4 Design and Implementation
This section presents the design and implementation of our
proposed mitigations against excessive vCPU spinning in
guest VMs running on top of KVM1. The goal of our mitiga-
tions is to suppress PLE events due to scheduler mismatch,
lost opportunity and overboost, which will result in a reduc-
tion of the total number of PLE events, without scarifying
the VM agnostic feature of KVM.

4.1 vCPU Debooster
We propose a mechanism called debooster to alleviate the
negative impact of the scheduler mismatch problem. This
mechanism deboosts, or lowers the priority of, vCPUs that
are preempted because of PLE. The debooster helps to boost
a target vCPU which is not boosted because of the host OS
scheduler policy even if the KVM vCPU scheduler makes a
request to boost it.

As explained in Section 3.2, the host OS scheduler does not
always schedule the boosted vCPU immediately to keep the
fairness between two vCPUs. This induces a large number of
continuous PLE events by scheduling the PLE-causing vCPU
repeatedly before the root cause is resolved. When the KVM
vCPU scheduler makes a request for boost, the debooster
compares the virtual runtime of the boosted vCPU with the
PLE-causing vCPU if both vCPUs are in the same runqueue.
If the virtual runtime difference is larger than a threshold, the
debooster increases the virtual runtime of the PLE-causing
vCPU up to the virtual runtime of the boosted vCPU minus
the threshold to convince the host OS scheduler to pick up the
boosted vCPU as a next task. By lowering the PLE-causing
vCPU priority, the host OS scheduler always schedules a
boosted vCPU instead of the PLE-causing vCPU because the
debooster makes the virtual time difference between two
vCPUs not too large to boost.

This design does not violate the fairness of vCPU sched-
uling. The host OS scheduler can keep the fairness as usual
among the VMs and other threads on the host because the
debooster does not raise the priority of the boosted vCPU.

1Source code is available at https://github.com/sslab-keio/ple-kvm.
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Furthermore, the debooster results in more efficient utiliza-
tion of CPU time. Without the debooster, the CPU time for
the PLE-causing vCPU will be wasted to execute pause-loop
until the host OS scheduler consider the boost is fair. How-
ever, the CPU time can be used for another task by deferring
scheduling of PLE-causing vCPUs. Since the PLE-causing
vCPU cannot make any progress until the root cause is re-
solved, it is reasonable to defer its execution.

Note that vCPU pinning is effective against the scheduler
mismatch problem by ensuring that each per-core runqueue
does not contain two or more vCPUs in the same VM. The
boosted vCPU is not disturbed by PLE-causing vCPUs. How-
ever, it requires careful configuration of vCPU affinity and
reduces the degree of oversubscription. As a consequence,
vCPU pinning is usually used only for high-performance
settings [42]. The debooster allows the hypervisors to dele-
gate management of load-balancing to the host OS scheduler
while mitigating the scheduler mismatch problem.

4.2 Strict Boost for IPI Recipients
As explained in Section 3.3, the candidate vCPU selection
for a boost is important whereas KVM still suffers from two
problems: lost opportunity and overboost. In the current KVM
vCPU scheduler, the halted IPI recipients or the resourcewait-
ers are candidates for a boost in the first iteration. The lock
waiters are also candidates in the second iteration. Therefore,
IPI recipients in user mode are excluded from the candidates
for a boost. If an IPI is sent to a vCPU in user mode, the
IPI-sending vCPU needs to wait in a tight loop for its ac-
knowledgement. Besides, IPI recipients should be boosted to
resolve PLE events due to IPI synchronization, and resource
waiters should be high priority for a boost if the PLE-causing
vCPU exits because of a lock-holder preemption.

We introduce strict boost to mitigate the lost opportunity
and overboost problems. Strict boost prepares two rules of
candidate vCPU selection for either spinlock or TLB shoot-
down (see Section 2.2). For TLB shootdown, strict boost adds
to the candidates for boost the IPI recipients of not only
halted vCPUs but also vCPUs in user mode. For spinlock,
strict boost prioritizes the resource waiters by limiting the
candidate vCPUs in the first iteration.
Strict boost is stricter than the KVM vCPU scheduler in

the following three points: 1) IPI recipient in user mode is
boosted, 2) IPI recipient is boosted only when an IPI-sending
vCPU causes a PLE event, and 3) IPI recipient is not boosted
if it is likely to have responded to the IPI. By selecting a
candidate vCPU in a strict way, the strict boost can add
wide range of vCPUs to the candidates for boost without
amplifying the negative side effects when a PLE event occurs
because of a spinlock.

4.3 Implementation
We have implemented our mitigations on Linux/KVM with
Linux kernel version 5.6.0. Our implementation modifies less

than 50 lines of code in KVM and does not require code
modifications at the guest.

vCPU Debooster is implemented without modifying the
KVM vCPU scheduler or the Linux scheduler. The Linux
scheduler, designed to work with the KVM vCPU scheduler,
provides the yield_to_task interface through which the
vCPU scheduler can give scheduling hints. This interface is
implemented for each Linux scheduler and “translates” the
hints into the terminology that each scheduler can under-
stand2. Debooster is implemented inside the interface.
Strict boost is implemented in the KVM vCPU scheduler

and the KVMvirtual IPI handler. Once a vCPU issues an IPI to
another vCPU, the virtual IPI handler in KVM is invoked. The
virtual IPI handler monitors all IPIs to record IPI senders and
recipients. When a vCPU causes a PLE event, the strict boost
checks this record to know which PLE-causing vCPU has
issued IPIs. If there are vCPUs that have not been scheduled
after an IPI has been sent to them, strict boost adds them as
candidates for boosting. This implementation avoids adding
to the candidates vCPUs that have already been scheduled
after an IPI has been sent to them because they likely have
already responded to the IPI. Since the candidates are not
restricted to those that have been halted, the strict boost can
boost vCPUs in user mode as well.

5 Evaluation
We evaluate debooster and strict boost in the conditions
presented in Section 5.1. Our evaluation demonstrates that
debooster and strict boost:

• are effective at reducing the number of PLE occur-
rences by up to 87.7 % (Section 5.2);

• improve the performance in our benchmarks by up to
80 % and reduce the number of PLEs as the number of
VMs increases(Section 5.3);

• are effective respectively for spinlock-intensive and
mmap-intensive applications (Section 5.4);

• maintain the fairness of the system (Section 5.5);
• reduce the latency of spinlock and TLB shootdown
inside the guest VMs by 56.7 % on average (Section 5.6).

5.1 Experimental Settings
We evaluate debooster and strict boost in the environment
shown in Table 2 with the benchmarks presented in Ta-
ble 1: the mosbench and parsec benchmark suites, pbzip2,
dbench, ebizzy and hackbench. All the VMs run on the
same machine and execute Ubuntu 18.04 LTS with the Linux
kernel 4.15. One VM executes the CPU-intensive swaptions
benchmark and rarely causes PLE events, while the other
VMs execute one of the benchmarks of Table 1. Each VM
has 8 vCPUs. The total number of vCPUs is 8 times × the
number of VMs; those vCPUs are multiplexed on 8 pCPUs.
All our experiments are executed ten times.

2To the best of the authors’ knowledge, only CFS implements this interface.
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We use the default configuration of the PLE parameters
PLE_gap (set to 128) and PLE_window (dynamically ad-
justed by KVM). APPLES [27] proposes auto-tuning of these
parameters. If incorporated to our approaches, we believe
we can achieve better performance.

We configure the kernels to use qspinlock instead of
ticket spin locks to avoid the lock-waiter preemption prob-
lem. The PCID-based optimization [20] is enabled to reduce
TLB misses. Finally, hyperthreading is turned off.

5.2 Reduction of PLE Occurrences
Figure 7 and 8 show the proportion of the number of PLE
occurrences on each benchmark when respectively four and
two VMs are running. In these figure, combined is when
both debooster and strict boost are enabled.

In the four VMs case our approach reduces the number of
PLE occurrences from the baseline in all benchmarks, by up
to 87.6 % in ebizzy. Our approach also reduces the number
of PLE occurrences for benchmarks other than hackbench
in the two VMs case. The reduction of the number of PLE
occurrences in the four VMs case is more significant than
the two VMs case. This means our approach is more and
more effective as more and more VMs are consolidated on a
single physical machine. This is because, as the number of
VMs running simultaneously increases, PLE events occurs
more frequently and the scheduler mismatch problem and
lost opportunity get more serious.
While Figure 6 shows that the cause of more than 70 %

of the PLE events is “success”, our mitigations can reduce
PLE events by more than 50 % in most of the benchmarks in
Figure 8. This is because, in the context of Figure 6, “success”
simply means that a vCPU that does not generate PLE events
has been boosted and scheduled. However this does not
mean that the root cause of the PLE events has been solved.
Moreover, this could be amplified because the ring-based
candidate selection algorithm could choose the same vCPU
as the target in the next iteration. Removing the root cause
of a PLE by introducing our mitigations can eliminate PLE
events which seem to be handled well but for which the
target of the boost is actually not the root cause.
The number of PLE occurrences increases in hackbench

in the two VMs experiment. This is due to a lot of reschedul-
ing IPIs in hackbench. Unlike IPIs for TLB shootdown, the
rescheduling IPIs are not synchronous; the IPI sender does
not wait for acknowledgements from IPI recipients. In hack-
bench, 99.97 % of IPIs are sent to request rescheduling, which
is the highest rate in all benchmarks. For example, in the TLB
shootdown intensive workload like vips, the rate of resched-
ule IPI is only 13.85 %. As a consequence, the effectiveness of
strict boost is limited by the following reason. Since vCPUs
that receive rescheduling IPIs are also candidates to boost
by strict boost when a PLE occurs, the possibility of boost-
ing a vCPU which is not the cause of the PLE is increased.
However, scheduler mismatch and lost opportunity are more
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Figure 7. Number of PLE occurrences with the baseline
KVM and both our debooster and strict boost mitigations
active in parallel when four VMs run simultaneously.
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Figure 8. Normalized number of PLE occurrences with the
baseline KVM and both our debooster and strict boost mitiga-
tions activated in parallel when two VMs run simultaneously.

frequent in four VMs experiment than two VMs experiment.
Our approach reduces the number of PLE events by 70 % in
hackbench in four VMs experiment.
Since the strict boost implementation is VM-agnostic,

strict boost does not distinguish between the reschedule
IPI and the TLB shootdown IPI. Although strict boost could
eliminate unnecessary boosts by analyzing IPI information,
this is not used for general guests and it is vulnerable to
changes in the semantics of IPIs. Consequently, we do not
implement this optimization and leave it as future work.

5.3 Performance Impact of Our Mitigations
In this section we show the impact of our mitigations on the
performance of the considered benchmarks. The first column
of Figure 9 shows the performance improvement with our
mitigations and compares it to six kernel configurations: 1)
“Baseline”, i.e., Linux 5.6.0, 2) “Debooster” means debooster is
solely turned on, 3) “Strict boost” means strict boost is solely
turned on, 4) “Usermode” means the kernel in this configura-
tion treats all preempted vCPUs in user-mode as candidate,
5) “Overboost” means the kernel in this configuration avoids
boosting halted vCPUs if the yielding vCPU does not send
an IPI to those vCPUs, 6) “Combined” where both debooster
and strict boost are turned on. The configurations of both
“Usermode” and “Overboost” are variant of the strict boost.
All the results are normalized to the baseline performance
in two VMs experiment so that higher is better.
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Overall, the performance improvements introduced by
our mitigations have the same characteristics in any num-
ber of VMs running simultaneously. Thus, our approach
improve the performance by eliminating unnecessary exces-
sive vCPU spinning in the guests regardless of the number
of simultaneously running VMs.

Figure 9 shows the performance of dedup, vips, and ebizzy
improves respectively by 42.5 %, 61.2 %, and 80.7 %, in the
two VMs experiment. As seen from Figure 3 in Section 2,
dedup and vips are PLE-intensive. They generated 104 or
more PLE events per second. Therefore, our approaches can
reduce PLE events more than in other benchmarks, resulting
in better performance improvements.

Ebizzy is less PLE-intensive (103 PLE events per second)
than dedup and vips, according to Figure 3. The impressive
performance improvement of ebizzy comes from the fact
that PLE events in ebizzy are not handled well in the base-
line KVM. According to Figure 6, more than 60 % of the PLE
events are not handled in the baseline KVM. Our approaches
reduce PLE events effectively in ebizzy and result in a 80 %
performance improvement in the two VMs experiment.
Figure 3 shows that psearchy is one of the most PLE-

intensive applications. However, the performance improve-
ment in psearchy is limited by up to 6.1 % (see Figure 9). This
is because the baseline KVMhandles PLE events in psearchy
better than PLE events in other PLE-intensive workloads:
90 % of PLE events are handled successfully (see Figure 6).
Figure 10 shows the performance on benchmarks which

are not PLE-intensive workloads. At best, the performance
improves by up to 4.2 % for hackbench (four VMs experi-
ment) and 2.8 % in pbzip2 (two VMs experiment). This is
because, except for hackbench as explained in Section 5.2,
the number of PLE events per second in these benchmarks
is considerably lower than for the ones displayed in Figure 9.
Therefore, the performance improvement is lower than for
the previously mentioned benchmarks that generates a high
number of PLE events per second.

5.4 Effectiveness of Debooster and Strict Boost
To confirm the effectiveness of debooster and strict boost,
we report the breakdown of the performance improvement
with four benchmarks: 1) dedup, 2) vips, 3) ebizzy, and
4) psearchy in the first column of Figure 9. The second
column of this figure shows the breakdown of the PLE events
reduction. The performance of the co-located swaptions is
also shown in the third column.

In these four benchmarks, the best performance improve-
ment can be seen when both debooster and strict boost are
active in parallel. The scheduler mismatch problem hinders
a vCPU from boosting even if the strict boost helps the KVM
vCPU scheduler to select a good candidate. Also, the lost
opportunity problem makes eliminating the root cause of
a PLE event difficult even if debooster allows CFS to sched-
ule the boosted vCPU evenly. As a consequence, debooster

and the strict boost work complementary to improve the
performance by reducing the number of PLE events.
In dedup and ebizzy, debooster reduces the number of

PLE events significantly (> 25 %) while strict boost is less
effective (< 20 %). However, in vips and psearchy, strict
boost significantly reduces the number of PLE events (> 45 %)
while debooster alone infrequently removes the PLE events
(< 20 %). This shows that debooster addresses the scheduler
mismatch problem while strict boost address both the lost
opportunity and overboost problems.

According to Figure 6, the second cause of unresolved PLE
events after scheduler mismatch is overboost in dedup and
ebizzy, but lost opportunity in vips and psearchy. This dif-
ference comes from the benchmarks characteristics. In dedup
and ebizzy, the vCPUs request to halt more frequently than
in vips and psearchy. To halt the vCPUs, HLT instructions
are invoked about 4,500 times per second in dedup. This is 20
times higher than the rate in vips. This high HLT rate causes
frequent task migrations by CFS and thus, the scheduler mis-
match problem surfaces. Also, the frequency of overboost
problems is related to the HLT rate because the overboost
problem occurs if the KVM vCPU scheduler tries to boost
halting vCPUs when a spinlock-waiter yields. Contrarily, the
lost opportunity problem comes from frequent TLB shoot-
down requests as well as the time spent by the benchmark
in user-mode. This is because preempted vCPUs are not se-
lected as a target to boost if they are executing the code in
user-mode. The time spent in user-mode is longer with vips
or psearchy compared to dedup or ebizzy. Therefore, strict
boost alone is effective in vips and psearchy.

To see a more fine-grained breakdown for strict boost, we
introduce two configurations “Usermode” and “Overboost”
as variants of strict boost. “Usermode” kernel treats all pre-
empted vCPUs in user-mode as a candidate. It reduces the
number of PLE events significantly in TLB shootdown in-
tensive benchmarks such as vips and psearchy (> 50 %).
However, this configuration increases the number of PLE
events in more frequent spinlock benchmark like ebizzy
because the preempted vCPUs in user-mode are not lock-
holder. The “Overboost” configuration reduces the number
of PLE events by only 2 %, which is not enough to suppress
the TLB shootdown latency while this configuration avoids
unnecessary boosting when a PLE event occurs due to spin-
lock. Thus, partial mitigation for lost opportunity does not
work well; strict boost needs to be used in conjunction.

5.5 System Fairness
To confirm our approaches do not have negative side-effects
on the co-located VM, we measure the performance of
swaptions, running inside the other VM. The third column
of Figures 9 and 11 show the normalized execution time. The
performance of swaptions is almost the same as the baseline
KVM. Since both debooster and strict boost do not raise the
priorities under CFS control, CFS can maintain the fairness it
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Figure 9. Performance breakdown: dedup, vips, ebizzy, and psearchy. For four kernel configurations, the first column
shows the performance, the second column shows the normalized number of PLEs, and the last column shows the execution
time of the co-runner application.
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Figure 10. Performance results with two kernel configura-
tions when two or four VMs run simultaneously

guarantees. More importantly, the performance gain in some
benchmarks is not at the expense of the performance in the
co-located VM. Interestingly, the performance of swaptions
co-located with vips improves by 25 %. This is because our
approach reduces unnecessary PLE events, by 69 %.

5.6 Time Spent in Spinlock and TLB Shootdown
We evaluate the execution time in spinlock and TLB shoot-
down inside the guests to confirm that reducing the number
of PLE events has a positive impact of them. We monitors
two functions, native_queued_spin_lock_slowpath and
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Figure 11. Co-runner performance results with two kernel
configurations when two or four VMs run simultaneously

smp_call_function_many, because these two functions are
the major producers of PLE events.
Figure 12 shows the execution time of spinlock and TLB

shootdown inside the guests in four benchmarks. The nor-
malized total execution time is shown in the first column,
the average is shown in the second column, and the 95th
percentile is shown in the third column.

When our twomitigations are turned on, the total, average
and 95th percentile of execution time are reduced from the
baseline for both spinlock and TLB shootdown in all bench-
marks by 55.8 % on average. Since our approach suppresses a
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Figure 12. Execution time of spinlock and TLB shootdown
inside the guests.

large number of continuous PLE events, the 95th percentile
of execution time is reduced, which in turns makes the total
execution time lower than the baseline.
In general, debooster improves the performance of spin-

lock and TLB shootdown because the scheduler mismatch
problem can happen when a PLE occurs due to both of
spinlock and TLB shootdown. In contrast, strict boost im-
proves the performance of TLB shootdown only because the
lost opportunity and the overboost problem surface when
a PLE event happens due synchronization for TLB shoot-
down. However, we can see exceptions in two cases: the
TLB shootdown execution time in ebizzy and psearchy. In
ebizzy, frequent scheduler mismatch prevents the vCPU
scheduler from boosting even strict boost provides precise
vCPU candidates for a boost. Consequently, strict boost
alone does not reduce the TLB shootdown execution time in
ebizzy. In psearchy, debooster alone does not reduce the
TLB shootdown execution time. This is because scheduler
mismatch does not occur frequently in psearchy, thus we
should provide precise vCPU candidates for a boost to reduce
the TLB shootdown latency in psearchy. Therefore, solely
introduced these mitigations are less effective in these two
cases than in other general cases.

6 Related Work
Excessive vCPU spinning is caused by waiting for preempted
vCPUs. Traditionally, detecting unusually long wait in guest
VMs is required for an efficient vCPU scheduler against the
lock-holder preemption (LHP) problem [7, 33]. Hardware-
based excessive vCPU spinning detection [3, 26, 37] alone
unfortunately does not solve this problem. Several vCPU
schedulers that leverage these hardware features have been
proposed [25, 27]. The latency of IPI synchronization in guest
VMs is also a major cause of excessive vCPU spinning. To
mitigate the problem, some researches prioritize IPI involved

vCPUs for fast responses to IPI bymonitoring IPI signals [5, 6,
11]. Configuring the vCPU time slice dynamically is another
way to complete a critical section in guest VMs quickly [1,
2, 12, 31, 39, 40]. However, as we show, these approaches
either suffer from the scheduler mismatch problem when
they rely on the existing host OS scheduler to manage their
resources, or require heavy modifications to their host or
guest scheduler. In contrast, our work is VM agnostic yet
mitigates the scheduler mismatch problem.

For hypervisor scheduler-based approaches, co-scheduling
is another way to mitigate the negative effects due to the
spinlock synchronization issues. It simultaneously schedules
all the sibling vCPUs in the same VM [34, 38, 41]. However,
co-scheduling approaches suffer from CPU fragmentation
and priority inversion. Although balance scheduling [29]
can alleviate such drawbacks, it prevents migrating vCPUs
to keep a fair load balancing. In contrast, because our mitiga-
tions do not require modifications of the host OS scheduler
core, a fair load balancing is kept.
Para-virtualization can bridge the semantic gap between

the hypervisor and guest VMs to mitigate the latency that
comes from both the spinlock and IPI synchronization. The
para-virtualized TLB shootdown schema can improve VM
performance by completing the TLB shootdown without
waiting for remote vCPUs to be scheduled [4, 10, 15, 24]. To
avoid the lock-waiter preemption problem, it uses a queue-
based spinlock instead of the ticket-based spinlock [32] for
a virtualization environment. To further improve the per-
formance, new para-virtual lock primitives have been pro-
posed [8, 23]. Sharing the scheduling information of host OS
and guest VMs is another approach [5, 28, 30]. Contrarily to
our approach, these approaches require guest OS modifica-
tion to bridge the semantic gap.

7 Conclusion
Excessive vCPU spinning is a widely known problem caused
by a semantic gap between a hypervisor and guest operating
systems. Unfortunately, this problem is not solved yet.
We presented an in-depth analysis of excessive vCPU

spinning in the VM-agnostic KVM hypervisor and analyzed
the root causes of this problem. We then showed that slight
modifications (41 LOC) on the KVM vCPU scheduler can
gracefully solves these issues and improve the performance
by up to 80 % without sacrificing scheduler fairness.

Recent research has shown promising steps towards prov-
ing some properties of schedulers [14]. We believe it is nec-
essary to extend these proofs to verify the correctness of
schedulers co-operating in a virtualized environment.
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