
Nioh-PT: Virtual I/O Filtering for Agile Protection against
Vulnerability Windows

Mana Senuki
Keio University

senuki@sslab.ics.keio.ac.jp

Kenta Ishiguro
Hosei University

kenta.ishiguro.66@hosei.ac.jp

Kenji Kono
Keio University

kono@sslab.ics.keio.ac.jp

ABSTRACT
Hypervisor vulnerabilities cause severe security issues in multi-
tenant cloud environments because hypervisors guarantee isolation
among virtual machines (VMs). Unfortunately, hypervisor vulnera-
bilities are continuously reported, and device emulation in hyper-
visors is one of the hotbeds because of its complexity. Although
applying patches to fix the vulnerabilities is a common way to pro-
tect hypervisors, it takes time to develop the patches because the
internal knowledge on hypervisors is mandatory. The hypervisors
are exposed to the threat of the vulnerabilities exploitation until
the patches are released.

This paper proposes Nioh-PT, a framework for filtering illegal
I/O requests, which reduces the vulnerability windows of the de-
vice emulation. The key insight of Nioh-PT is that malicious I/O
requests contain illegal I/O sequences, a series of I/O requests that
are not issued during normal I/O operations. Nioh-PT filters out
those illegal I/O sequences and protects device emulators against
the exploitation. The filtering rules, which define illegal I/O se-
quences for virtual device exploits, can be specified without the
knowledge on the internal implementation of hypervisors and vir-
tual devices, because Nioh-PT is decoupled from hypervisors and
the device emulators. We develop 11 filtering rules against four
real-world vulnerabilities in device emulation, including CVE-2015-
3456 (VENOM) and CVE-2016-7909. We demonstrate that Nioh-PT
with these filtering rules protects against the virtual device exploits
and introduces negligible overhead by up to 8% for filesystem and
storage benchmarks.

CCS CONCEPTS
• Security and privacy → Virtualization and security;

KEYWORDS
security, virtualization, virtual device, cloud computing
ACM Reference Format:
Mana Senuki, Kenta Ishiguro, and Kenji Kono. 2023. Nioh-PT: Virtual I/O
Filtering for Agile Protection against Vulnerability Windows. In The 38th
ACM/SIGAPP Symposium on Applied Computing (SAC ’23), March 27-March
31, 2023, Tallinn, Estonia. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3555776.3577687

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’23, March 27- March 31, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9517-5/23/03. . . $15.00
https://doi.org/10.1145/3555776.3577687

1 INTRODUCTION
In multi-tenant cloud environments, hypervisors play a crucial role.
Hypervisors virtualize hardware resources such as CPU, memory,
and peripheral devices for high utilization and flexibility. Conse-
quently, hypervisor vulnerabilities cause severe security issues
because hypervisors are in charge of isolating guest virtual ma-
chines. However, hypervisor vulnerabilities are continuously re-
ported, and device emulation to multiplex peripheral devices is one
of the hotbeds because of its complexity [14, 30, 33, 34].

Although vulnerabilities in device emulation vary in devices and
risk, attacking through illegal I/O requests is one of the typical meth-
ods to exploit. For example, VENOM [21] and CVE-2016-7909 [19]
are vulnerabilities in the floppy disk controller (FDC) emulator and
the AMD PC-Net PCI II Ethernet Controller emulator. VENOM
allows guest users to cause a denial of service (DoS) or possibly
execute arbitrary code in the host hypervisor. CVE-2016-7909 al-
lows guest operating system (OS) administrators to cause a DoS.
The attack vector to exploit these vulnerabilities is common. The
attackers who control VMs perform illegal I/O requests that are not
issued for devices during normal operations.

Fixing vulnerabilities in hypervisors takes time because detailed
analysis and careful regression testing are necessary. A vulnerability
window of a hypervisor is defined as the period from its identifica-
tion to the installation of a correction or patch to the hypervisor.
Long vulnerability windows of hypervisors leave much time for
attackers to exploit the vulnerabilities. For example, according to
Ngoc et al. [25], 60% of the 24 KVM vulnerabilities took more than
60 days to fix. Alternative protection rather than patching is neces-
sary to reduce the time of exposing hypervisors to vulnerabilities.

This paper proposes a virtual I/O filtering framework, named
Nioh-PT, that defends against exploitation of vulnerabilities in de-
vice emulators during vulnerability windows. Nioh-PT consists of a
slim monitoring layer and an I/O request filtering engine. First, Nioh-
PT introduces the slim monitoring layer between the hypervisor
and guest VMs. This layer monitors I/O requests from guest VMs
and passes their information to the I/O filtering engine. Next, the
I/O filtering engine filters out illegal I/O requests according to the
filtering rules specified by device emulator developers. To protect
against a given vulnerability, system administrators introduce the
filtering rule developed with APIs provided by the I/O filtering en-
gine, by specifying the illegal I/O sequence which is a series of I/O
requests to exploit the vulnerability. Since the illegal I/O sequences
are not usually issued during normal operations, the I/O filtering
engine can reject such I/O requests without interfering with normal
operations. This protection model allows the system administrators
to deal with the vulnerabilities without detailed internal knowledge
and modification of device emulators if they know the illegal I/O

https://doi.org/10.1145/3555776.3577687
https://doi.org/10.1145/3555776.3577687
https://doi.org/10.1145/3555776.3577687

SAC ’23, March 27- March 31, 2023, Tallinn, Estonia M.Senuki et al.

sequences. Therefore, Nioh-PT works as a temporary countermea-
sure against vulnerabilities in device emulation during vulnerability
windows.

We implement a prototype of Nioh-PT for KVM [16] version
4.15.0-153-generic and QEMU [8] version 2.9.50. We add 60 lines
of code (LoC) for the slim monitoring layer to QEMU and build
the I/O filtering engine with 370 LoC in Rust from scratch. By
using Rust, a type- and memory-safe language [31], Nioh-PT re-
duces risks of memory leak and buffer overflow caused by adding
the I/O filtering engine. We also implement filtering rules against
four real-world vulnerabilities: VENOM [21], CVE-2015-5279 [22],
CVE-2016-7909 [19], and CVE-2020-13361 [20]. Our performance
experiment with Filebench [1], the filesystem and storage bench-
mark, shows that Nioh-PT with the 11 filtering rules introduces
negligible overhead by up to 8%.

The rest of this paper is organized as follows. Section 2 describes
the device emulation in hypervisors and its vulnerability. Section
3 describes our threat model. Section 4 shows the design and im-
plementation of our framework. Section 5 shows the experimental
results. Section 6 describes related works. Section 7 concludes the
paper.

2 DEVICE VIRTUALIZATION
Guest VMs in multi-tenant cloud environments share a single pe-
ripheral device on the same physical server for high utilization and
flexibility. To share a single physical device among VMs, device
emulation in hypervisors provides a virtual device for each VM.
This section describes the mechanism and security problems of
device emulation.

2.1 Device Emulation in Hypervisors
I/O requests to virtual devices are performed by accessing I/O ports
or memory-mapped I/O (MMIO) regions in the same way as the
requests to physical devices. However, hypervisors must trap and
emulate such operations to prevent direct access to physical devices
from the VMs because the VMs do not monopolize them.

Suppose that a VM uses IDE as an interface for a virtual disk.
I/O requests to the virtual disk from the VM are processed by the
hypervisor as follows. 1) The processor raises an exception when a
process in the VM accesses its IDE region. 2) The processor transfers
the control from the VM to the hypervisor. 3) The device emulator
in the hypervisor emulates the I/O requests by changing the virtual
disk state. 4) The hypervisor returns the emulated result to the VM
and resumes the VM execution.

For example, in KVM [16]+QEMU [8], the device virtualization
is performed with the combined effort of KVM and QEMU. Fig. 1
illustrates an architectural overview of KVM+QEMU. KVM is a
Linux kernel module responsible for virtualizing CPU and memory,
while QEMU is a user process responsible for virtualizing peripheral
devices. KVM traps I/O requests to virtual devices and forwards
them to QEMU for device emulation. The CPU extension, such
as Intel-VT [15] or AMD-V [5], raises an exception named VM-
exit when the VM running on KVM makes I/O requests to virtual
devices (1.). Then, KVM determines the VM-exit reason (2.). KVM
passes the I/O request information to QEMU where the VM-exit
reason is I/O or MMIO, and QEMU emulates the request (3.). QEMU

 Hardware

 Linux/KVM

 VM

Guest OS

Application Application

QEMU

CPU

Virtual
Device

1.

2.

3. 4.

5.

KVM ioctl interface

Guest Env. (VMX non-root mode) Host Env.
(VMX root mode)

User mode

Kernel mode

Figure 1: Overview of KVM+QEMU. I/O requests from the VM
are operated as follows, (1.) VM-exit by I/O requests from the VM,
(2.) KVM determines the VM-exit reason, (3.) KVM passes the I/O
request to QEMU, (4.) QEMU returns the result of emulation to
KVM, (5.) KVM resumes the VM’s execution.

returns the result of emulation to KVM through ioctl interface (4.).
Finally, KVM sets the result for the VM and resumes its execution
(5.).

2.2 Vulnerabilities in Device Emulator
Vulnerabilities in the device emulators cause severe security issues
because they run in the host context, and the attackers can conse-
quently access resources on the host by exploiting their vulnerabil-
ities. Device emulation is one of the hotbeds of the vulnerabilities
of hypervisors.

Table 1 shows examples of vulnerabilities in device emulators.
These vulnerabilities have been reported regardless of device types.
The following two difficulties in implementing and maintaining
device emulators make their vulnerabilities ubiquitous. First, de-
tailed internal knowledge of devices is required to implement their
emulators, but the vendors do not often disclose the device internal
structures. Since the device specifications intend to help device
driver developers, they mostly show the external interface of the
devices rather than their internal structures. Second, the software
implementation of the devices could make a vulnerability severe
compared to the physical devices. Even though the device regis-
ters or internal buffers are isolated at the circuit level in hardware,
they can affect each other in the device emulator due to software
bugs. For example, a buffer overflow in the device emulators can
overwrite other data in its process and become a critical security
hole.

Performing an illegal I/O sequence, a series of illegal I/O requests,
is a typical way to exploit vulnerabilities in the device emulators. For
example, VENOM (CVE-2015-3456) [21] can be exploited with the
illegal I/O sequence shown in Listing 1. VENOM is a vulnerability
in QEMU’s virtual floppy disk controller (FDC) and affects major
hypervisors such as KVM, Xen [7], and Oracle Virtual Box [28].
VENOM allows guest VM users to cause a DoS or possibly execute
arbitrary code in the host hypervisor. To exploit VENOM, attackers
first issue the READ_ID command to transfer the virtual FDC into the
command phase (line 6 in Listing 1). Then, the attackers repeatedly

Nioh-PT: Virtual I/O Filtering for Agile Protection against Vulnerability Windows SAC ’23, March 27- March 31, 2023, Tallinn, Estonia

Table 1: Vulnerabilities of Device Emulator. The following
are all QEMU vulnerabilities. This table shows the target device
emulator, the CVSS v2.0 Score, and the days from the time it was
reported until the patch was committed for each CVE ID.

CVE ID Device CVSS v2.0 Period
Score [days]

CVE-2015-3456 FDC 7.7 8
CVE-2015-5279 NE2000 7.2 28
CVE-2016-4439 SCSI 4.6 4
CVE-2016-7909 PCnet 4.9 187
CVE-2020-11102 Tulip 6.8 55
CVE-2020-13361 ES1370 3.3 -3
CVE-2020-13800 ATI SVGA 4.9 1
CVE-2020-15863 XGMAC 4.4 18
CVE-2020-25085 SDCHI 4.4 35

1 #include <sys/io.h>

2 #define FIFO 0x3f5

3

4 int main() {

5 int i;

6 outb(0x0a ,0x3f5); /* READ ID */

7 for (i=0;i <10000000;i++)

8 outb(0x42 ,0x3f5); /* push */

9 }

Listing 1: VENOM PoC code. Issue FDC’s READ_ID command by
outb(0x0a,0x3f5) in line 6. Write to the FIFO buffer repeatedly
to cause buffer overflow in line 8 after it.

write data into the FIFO buffer in the virtual FDC through the
port I/O (line 8). By writing repeatedly, the FIFO buffer overflows
because the device emulator does not check the FIFO index properly.
The VM results in a crash with this PoC.

This repeated writing attempt is rejected implicitly where a
physical FDC is used. Since this I/O sequence does not happen
during normal I/O operations for the physical FDC, we call this
sort of I/O sequence as an illegal I/O sequence.

2.3 Problems in Vulnerability Response
Long vulnerability windows of hypervisors leave attackers much
time to exploit. However, it takes a long time to fix the vulnerabili-
ties by applying the patches. The period column in Table 1 shows
the days that are taken to fix each vulnerability. These days are
calculated from the date when the vulnerability was reported and
the date when the patch was committed. We use Red Hat’s bug
tracker [13] to obtain the reported dates and qemu.org [3] to get
the commit dates. Although the length of vulnerability windows
varies depending on the complexity of each vulnerability, the result
shows that each vulnerability takes several days to be fixed. Like-
wise, Ngoc et al. [25] report that fixing vulnerabilities takes one or
two months for Xen and 71 days for KVM on average.

Fixing vulnerabilities in device emulators takes a long time for
the following two reasons. First, developing a correct patch requires
an in-depth analysis of the vulnerability. Second, each patchmust be
carefully checked to confirm it resolves the vulnerability and does

not introduce new vulnerabilities. The hypervisor and its device
emulators are complicated because of their code size; thus, careful
code modification and regression testing are required to fix the
vulnerabilities, even if the size of the code change is small. The
long vulnerability window is inevitable as long as we rely on only
patches to fix the vulnerabilities.

3 THREAT MODEL
Our threat model assumes that attackers have administrative priv-
ileges to operate VMs. In other words, the attackers can execute
privileged commands and access virtual devices in guest VMs with-
out any restrictions. The attackers gain administrative privileges in
guest VMs by compromising them by exploiting vulnerabilities in
guest applications or OSes. The attackers then attempt to exploit
vulnerabilities in the device emulators; we assume no vulnerability
in other hypervisor components is exploited in our threat model.
In addition, our threat model does not assume that cloud providers,
who have the administrative control over hypervisors, are mali-
cious.

4 DESIGN AND IMPLEMENTATION
4.1 Nioh-PT Overview
In this paper, we propose Nioh-PT, a framework to protect hy-
pervisors temporarily against vulnerabilities in device emulators
during the vulnerability windows. As shown in Fig. 2, Nioh-PT re-
sides between VMs and the hypervisor and is composed of the slim
monitoring layer and the filtering engine. The monitoring layer
intercepts all I/O requests from VMs. The filtering engine detects
and stops malicious I/O requests from the intercepted I/O requests
based on filtering rules provided by device emulator developers.
Since Nioh-PT allows dealing with vulnerabilities without modify-
ing the device emulators and it does not affect the internal states of
VMs, it enables system administrators to develop countermeasures
instantly when a vulnerability in a device emulator is reported.

Device emulator developers can specify what I/O sequences are
illegal as a filtering rule with APIs provided by the I/O filtering
engine. The filtering engine filters out the I/O requests that follow
the sequences the device emulator developers designated. Rejecting
illegal I/O requests does not affect normal device operations because
malicious code issues I/O requests in a different flow from benign
I/O requests. If an I/O sequence which is identical to a malformed
I/O sequence is used in ordinary I/O requests, the problem would
have been discovered during the test phase of the device emulator
before it is reported as a security vulnerability. Therefore, it is
highly expected that VMs can run without interference as long as
they issue normal I/O requests only, even if illegal I/O sequences
are prohibited.

Dividing Nioh-PT into the monitoring layer and the filtering
engine makes it easy to deploy Nioh-PT because the filtering engine
can be maintained independently of the device emulator. Adding or
removing an I/O filtering rule does not require modifications to the
device emulator, and thus can be done without long disruption of
the service. However, it takes a long time for the device emulator
developers to develop patches to fix vulnerabilities as mentioned
in Section 2. In addition, applying the patch involves modifications
to the device emulator and implies disruption of the service. This

SAC ’23, March 27- March 31, 2023, Tallinn, Estonia M.Senuki et al.

VM

Monitoring
Layer

Device Emulator
Hypervisor Filtering Rules

Normal

I/O Request

Illegal

I/O Request

outb(0x3f5, val)

inb(0x3f4)

outb(0x3f5, val)

NG

NOT READY

outb(0x3f5, 0xa)

Filtering Engine

Check

OK

Check

NG

Figure 2: Overview of I/O Filtering Mechanism. Nioh-PT con-
sists of a monitoring layer and a filtering engine. The monitoring
layer pass the information of the I/O requests to the filtering en-
gine. The filtering engine filters out illegal I/O requests specified as
filtering rules, and the monitoring layer accepts or rejects them.

vulnerability window is serious because hypervisors are exposed
to security threats during the window, which could lead to critical
security incidents. To reduce the risk of a vulnerability before the
patch is released, it is important to provide a defense mechanism
that can be applied, modified and removed without changing the
code of the hypervisor.

4.2 Slim Monitoring Layer
The monitoring layer intercepts I/O requests from VMs before they
are emulated. When a VM is trying to read a value from the device
emulator, the monitoring layer obtains the I/O address (MMIO or
I/O port address), the access size, and the value read. When a VM
is trying to write a value to the device emulator, it obtains the I/O
address, the access size, and the value to be written. The monitoring
layer passes the obtained information to the filtering engine so that
it can validate the I/O sequence.

The monitoring layer is clearly separated from the filtering en-
gine, and not affected by the modification of the filtering engine.
The filtering engine evolves by incorporating new filtering rules
to defend against new vulnerabilities. Those filtering rules are re-
moved after the patches are applied to the hypervisor to fix those
vulnerabilities. In spite of the continual update on the filtering en-
gine, there is no need to update the monitoring layer, and thus the
hypervisor can continue to run without any disruption.

4.3 I/O Request Filtering Engine
Asmentioned in Section 4.1, the filtering engine determineswhether
I/O requests from VMs are illegal or not, based on the information
from the monitoring layer. Device emulator developers create filter-
ing rules by specifying illegal I/O sequences for each vulnerability
with APIs provided by the filtering engine. If there are several ways
to exploit a vulnerability, they can create multiple filtering rules to
detect each exploitation method. The filtering engine keeps track
of I/O requests issued by each VM. If it finds an exact match of
the issued I/O sequence with an illegal I/O sequence specified by
the filtering rules, it rejects the issued I/O request because it is

1 let venom_readid = Filter ::new()

2 .out(predicate ::eq(0xa), 0x3f5)

3 .out(predicate :: always (), 0x3f5)

4 .wait_until(

5 Filter ::new().inb_update(predicate :: function (|&x|

x & 0x80 != 0), 0x3f4),

6 Filter ::new().out(predicate :: always (), 0x3f5));

Listing 2: Filtering rule for VENOM 1. Monitor READ_ID
command issuance and the parameter writing in line 2-3. Prohibit
the writing to the FIFO buffer until the VM confirms that the virtual
FDC permits the access to the buffer in line 4-6.

considered malicious and the VM is attempting to compromise the
hypervisor by exploiting the vulnerability in the device emulator.

Table 2 shows the list of APIs in Nioh-PT to describe filtering
rules that specify illegal I/O sequences. An illegal I/O sequence
is described by chaining I/O requests, which is represented by an
invocation to a corresponding API in Table 2. If an I/O request writes
a value to an I/O address, an API call to the out family in Table 2
is chained. A method in the out family takes two arguments: the
first one (value_condition) specifies the value written to the I/O
address specified in the second argument (addr). The first argument,
value_condition, is specified by a predicate object in Rust [2]. It
can express the value is equal to, less than, greater than any Rust
expression, or any combination of those primitive predicates. If an
I/O request reads a value from an I/O address, an API call to the in
family is chained. Methods in the in family takes an I/O address
(addr) from which a value is read, and optionally the value to be
read (value_condition).

When manipulating an I/O device, it is common to wait until it
reaches a certain state. For example, it is necessary to wait until a
busy bit is cleared before requesting another I/O operation. Nioh-
PT provides wait_until method to express a certain I/O sequence
should be issued after another I/O sequence is issued. In other
words, if a certain I/O sequence appears before another sequence,
it is considered illegal. Method wait_until takes two arguments:
the first one (condition_filter) specifies an I/O sequence that
should be issued before the I/O sequence specified by the second
argument (next_filter). It is considered illegal if an I/O sequence
specified by next_filter comes before the I/O sequence specified
by condition_filter.

Listing 2 shows an example of the filtering rule that defends
against the VENOMvulnerability. As described in Section 2, VENOM
overflows the FIFO buffer in FDC by writing to it repeatedly after
READ_ID command is issued. Once READ_ID command is issued,
no value should be written to the buffer until the device register,
mapped to I/O address 0x3f4 in this example, indicates the FIFO
buffer is accessible again. In Listing 2, READ_ID command is mon-
itored in lines 2-3. This filtering rule prohibits the writing to the
FIFO buffer until it is confirmed that the FDC permits the access to
the buffer in line 4-7.

4.4 Implementation
We have implemented Nioh-PT prototype for KVM [16] version
4.15.0-153-generic and QEMU [8] version 2.9.50 on Intel x86_64.
Nioh-PT is implemented in Rust because it guarantees type- and

Nioh-PT: Virtual I/O Filtering for Agile Protection against Vulnerability Windows SAC ’23, March 27- March 31, 2023, Tallinn, Estonia

Table 2: API List. This table shows the APIs to describe filtering rules that specify illegal I/O sequences.

family API description
create new() Create a filter that has no rules. Every I/O request is negated.
out outb(value_condition, addr) An I/O request to write a value specified value_condition to the I/O address

specified by addr. Use an appropriate API depending on the writing size (outb,
outw, outl). Use out if the size is not relevant.

outw(value_condition, addr)
outl(value_condition, addr)
out(value_condition, addr)

in inb(addr)
An I/O request to read from the specified I/O address (addr). Use an appropriate
API depending on the reading size (inb, inw, inl). Use in if the size is not
relevant.

inw(addr)
inl(addr)
in(addr)
inb_update(value_condition, addr)

An I/O request to read from addr. Argument value_condition specifies the
value read from the I/O address.

inw_update(value_condition, addr)
inl_update(value_condition, addr)
in_update(value_condition, addr)

wait wait_until(condition_filter, next_filter) An I/O sequence specified by next_filter must wait until the I/O sequence
specified by condition_filter is issued.

memory-safety at the compile time [31]. This characteristic of Rust
eliminates the possibility of dangling pointers and buffer overflows
without unacceptable overheads. Nioh-PT is a dynamic library
linked to QEMU. QEMU emulates I/O devices by reading from or
writing to a memory region called MemoryRegion. The monitoring
layer of Nioh-PT get the contents of I/O requests from VMs. Fig. 3
shows the control flow of I/O processing from a VM to a virtual
device via Nioh-PT. The VM sends an I/O requests to KVM (1.).
The monitoring layer gets the information about the requested I/O
(e.g. read/write operation, the accessed I/O address, the value it
attempts to write) (2.). The monitoring layer passes the information
to the filtering engine (3.). The filtering engine decides whether the
I/O request is illegal or not, according to all the registered filtering
rules (4.). If it is illegal, the filter discard the request. Otherwise, the
request is passed to the device emulator (5.).

When a filtering rule is registered to the filtering engine, the
filtering engine builds an internal data structure that represents the
illegal I/O sequence. The filtering engine manages a pointer for each
filtering rule that points to the current location in the corresponding
sequence. When I/O request information is transferred from the
monitoring layer, the filtering engine searches for a match with
the I/O requests in the illegal I/O sequences. If there is a match,
the pointer is advanced to point to the next I/O request. Since
multiple filters can be registered at the same time, all the pointers
are advanced if the transferred I/O request matches with multiple
I/O sequences. If the pointer comes to the end of the I/O sequence,
the filtering engine judges it is illegal, raises a warning, and stops
transferring the I/O request to the virtual device. Note that the
pointer is reset if the condition is met in wait_until because the
I/O sequence is considered benign in this case.

5 EVALUATION
In this section, we first analytically examine the security guar-
antees provided by Nioh-PT against real-world vulnerabilities in
QEMU. Then, we show our prototype can defend against CVE-
2015-3456 (VENOM) by using the PoC code. Finally, we measure

4.

KVM

5.

Virtual

Device

QEMU

1. 5.

VM

3.

2.

Monitoring Layer

Filtering Engine 5.

5.

Link

Filtering

Rule

Filtering

Rule

API

5.

Figure 3: The flow of processing I/O requests. The I/O requests
from the VMs are processed in Nioh-PT as follows, (1.) The VM
requests I/O to operate the device, (2.) The monitoring layer gets
the information of the I/O request, (3.) The monitoring layer pass
it to the filtering engine, (4.) The filtering engine filters checks
whether the I/O request is illegal, (5.) The monitoring layer accepts
or rejects according to the judge of the filtering engine.

the performance overhead introduced by Nioh-PT. The experimen-
tal environment is shown in Table 3.

5.1 Security Analysis
We develop 11 I/O filtering rules against four real-world vulner-
abilities exploited through the port I/O interface. Since the vul-
nerabilities may have several paths to exploit, we develop more
filtering rules than the vulnerabilities. In the rest of this section,
we provide the security analysis of six vulnerabilities, including
the four vulnerabilities prevented by the filtering rules. The size of
I/O filtering rules depends on the number of I/O requests to exploit
vulnerabilities. We develop them with seven lines of code (LoC) on
average, and 16 LoC at the maximum.

VENOM. As mentioned in Section 2, VENOM is a vulnerability
of QEMU’s FDC emulator [21]. This vulnerability allows attackers

SAC ’23, March 27- March 31, 2023, Tallinn, Estonia M.Senuki et al.

Table 3: Configuration in Experiments

Host OS Ubuntu 18.04.5 LTS
Linux Kernel 4.15.0-153-generic
Host CPU Intel Xeon Silver 4210 CPU @ 2.20GHz
Host Core 10

Host Memory 32 GB
QEMU Version 2.9.50

Guest OS Ubuntu 18.04.6 LTS
Linux Kernel 4.15.0-166-generic

vCPUs 4
Guest Memory 8 GB

to crash the VM or execute arbitrary code in the host machine by a
buffer overflow in the FDC’s FIFO buffer. VENOM can be exploited
with READ_ID, as shown in Section 2. Another FDC command,
DRIVE_SPECIFICATION_COMMAND, can be used to exploit VENOM.
DRIVE_SPECIFICATION_COMMAND takes five parameters to execute.
Since the FDC emulator does not reset the FIFO buffer index unless
the MSB of the fifth argument is set, many write requests to the
FIFO buffer at line 8 in Listing 1 causes a buffer overflow [9]. We
can specify the filtering rule as shown in Listing 3.

To confirm the effectiveness of Nioh-PT with the filtering rules
against VENOM, we conducted the following two experiments.
First, we ran the following operations with a virtual floppy disk to
verify that the filtering rules allow Nioh-PT to detect a malicious
I/O sequence.

(1) Mount a floppy disk on the VM
(2) Execute VENOM PoC code in Listing 1
Next, we performed the following steps to check if normal I/O

requests to the virtual FDC are not interfered by the filtering rules.
(1) Mount a floppy disk on the VM
(2) Create a new file on the floppy disk and write 512 KB to it
(3) Add 512 KB to the created file
(4) Delete the file
(5) Unmound the floppy disk from the VM
As a result, only the exploit code was detected by the filtering

rules. Nioh-PT with the filtering rules can protect the hypervisor
against the malicious I/O requests without interfering with the
regular I/O requests to the virtual FDC.

1 let venom_drivespec = Filter ::new()

2 .out(predicate ::eq(0x8e), 0x3f5)

3 .out(predicate :: always (), 0x3f5)

4 .out(predicate :: always (), 0x3f5)

5 .out(predicate :: always (), 0x3f5)

6 .out(predicate :: always (), 0x3f5)

7 .out(predicate :: function (|&x| x & 0x80 == 0), 0x3f5)

;

Listing 3: Filtering rule for VENOM 2. Monitor FDC’s
DRIVE_SPECIFICATION_COMMAND command issuance in line 2.
Reject the write operation to the buffer if the MSB is not set of
the fifth parameter of the command in line 7.

1 let cve_2015_5279_pstart = Filter ::new()

2 .out(predicate ::lt(0x40), 0xc000)

3 .wait_until(

4 Filter ::new().out(predicate ::ge(0x40), 0xc000),

5 Filter ::new().out(predicate :: function (|&x| x << 8

> 49152 as u32), 0xc001));

Listing 4: Filtering rule for CVE-2015-5279. This code is for
defending the attack by using PSTART. Check the preparation to
write to PSTART register first in line 2. Reject the write operation
to PSTART register if the value is larger than 49152 in line 3-5.

1 let cve_2016_7909_word = Filter ::new()

2 .outw(

3 predicate ::eq(0x4c)

4 .or(predicate ::eq(0xcc))

5 .or(predicate ::eq(0x4e))

6 .or(predicate ::eq(0xce)),

7 0xc212)

8 .wait_until(

9 Filter ::new().outw(

10 predicate ::eq(0x4c)

11 .or(predicate ::eq(0xcc))

12 .or(predicate ::eq(0x4e))

13 .or(predicate ::eq(0xce))

14 .not(),

15 0xc212),

16 Filter ::new().out(predicate ::eq(0), 0xc210));

Listing 5: Filtering rule for CVE-2016-7909. Monitor if the
accessed device register is CSR76 or CSR78 in line 2-7. Prohibit the
writing 0 until the accessed device register change in line 8-16.

CVE-2015-5279.This vulnerability resides in theQEMU’s NE2000
network card emulator [22]. It allows attackers to cause a DoS attack
or execute arbitrary code through receiving packets. To exploit this
vulnerability, an attacker sets inappropriate values in the virtual
device registers PSTART, PSTOP, BNRY, and CURR. The device em-
ulator uses the four device registers’ values to calculate the receive
buffer index. The inappropriate values in these device registers
cause out-of-bounds memory access in ne2000_receive() func-
tion when it receives packets. It is necessary to issue a write request
after designating which device register to access through an I/O
request to write desired values to a specific device register. We can
specify the filtering rule as shown in Listing 4.

CVE-2016-7909. This vulnerability resides in the QEMU’s AMD
PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller such as
Am79C970A [19]. It allows attackers to cause a DoS attack via re-
ceiving packets. To exploit this vulnerability, an attacker sets CSR76
or CSR78 device registers to 0. It causes infinite loop through receiv-
ing packets via pcnet_receive(). To write the desired value to
the specific device register, it is necessary to specify the destination
register via a port I/O request and then issue a port I/O request to
write the value. In normal operation, 0 is never written to CSR76
and CSR78. We can specify the filtering rule as shown in Listing 5.

CVE-2020-13361. This vulnerability resides in the QEMU’s
ENSONIQ AudioPCI ES1370 emulator [20]. It allows attackers to
cause out-of-bounds accesses by setting an inapporopriate value to
the virtual device register FRAMECNT. FRAMECNT has two 16 bits
values together in 32 bits device register. If the value of the lower 16

Nioh-PT: Virtual I/O Filtering for Agile Protection against Vulnerability Windows SAC ’23, March 27- March 31, 2023, Tallinn, Estonia

bits is smaller than the upper 16 bits, the index based on their values
will exceed the buffer size in the virtual device, and then causes out-
of-bounds memory through calling es1370_transfer_audio().
To write the desired value to FRAMECNT, an attacker issues a
write I/O request after specifying a memory page to access via the
port I/O. We can specify the filtering rule as shown in Listing 6.

1 let cve_2020_13361_dac1 = Filter ::new()

2 .out(predicate ::eq(0xc), 0xc10c)

3 .wait_until(

4 Filter ::new().out(predicate ::ne(0xc), 0xc10c),

5 Filter ::new().outl(predicate :: function (|&x| (x >>

16 & 0xffff as u32) > x & 0xffff), 0xc134));

Listing 6: Filtering rule for CVE-2020-13361. Monitor the
specification of the memory page to write to set a value to
FRAMECNT in line 2. Prohibit the value that meets the condition
until another memory page is set in line 3-5.

CVE-2020-13800. This vulnerability resides in the QEMU’s ATI
SVGA emulator [24]. It allows attackers to cause infinite recursion
by setting a crafted value to MM_INDEX. MM_INDEX works as
an index of memory access in the virtual device. ati_mm_read()
and ati_mm_write() call them recursively depending on the value
of MM_INDEX. The two functions make recursive calls infinitely
where the value of MM_INDEX is seven or less. These values are not
set to MM_INDEX during the normal I/O operations. It is possible
to prevent exploiting this vulnerability by monitoring setting to
MM_INDEX and the request that causes recursion.

CVE-2020-15863. This vulnerability resides in the QEMU’s
XGMAC Ethernet Controller [23]. It allows attackers to cause a
buffer overflow and crash the QEMU process on the host. When it
sends packets, the contents are copied from memory to a buffer for
transmission. By crafting an in-memory data structure that does
not have a sign indicating the end of the packet, an attacker can
make out-of-bounds write to the buffer during the copy, which
leads to a DoS attack or execution of privileged code. Since this
vulnerability does not require I/O requests to exploit, Nioh-PT does
not help to protect the hypervisor against exploiting this.

5.2 Performance Evaluation
To measure the overhead introduced by Nioh-PT, we compare the
throughput of the bare QEMU, QEMU + Nioh-PT with no filtering
rules, and QEMU + Nioh-PT with the 11 filtering rules. Filtering
rules can be made for a variety of devices and the filtering engine
checks all I/O sequences performed by VM. We measure the over-
head of virtual disk as a representative example. For the experience,
we use I/O intensive workloads for a virtual disk, fileserver,
varmail, and webserver from Filebench [1], which contains a va-
riety of workloads for the filesystem and storage. Fig. 4 shows the
throughput normalized by the bare QEMU results for each work-
load.

Nioh-PT introduces the overhead by up to 8% in fileserver.
Since I/O virtualization involves the two high-cost context switches,
between the guest OS and the host and KVM and QEMU, the over-
head introduced by Nioh-PT becomes relatively small. Thanks to
the Rust’s compiling time check, Nioh-PT does not incur run-time

fileserver varmail webserver
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
Th

ro
ug

hp
ut

1

1 1

1.008

0.999 0.991

0.92

0.986 0.976

Without Framework
With Framework (Filter off)
With Framework (Filter on)

Figure 4: Performance Overhead. This compares the bare QEMU,
with Nioh-PT having 0 filters and with Nioh-PT having 11 filters
for 4 vulnerabilities based on the bare QEMU.

overhead for memory management like garbage collection. This
makes the filtering time by Nioh-PT more constant.

6 RELATEDWORK
Protecting hypervisors against malicious guest I/O requests
Nioh [27] leverages device specifications to filter out illegal I/O
requests from guest VMs. Nioh manages virtual device states as
an automaton and rejects illegal I/O requests that do not follow
the device specifications. This allows Nioh to protect hypervisors
against attacks with illegal I/O requests, including zero-day attacks.
However, building I/O filters for Nioh is time-consuming and error-
prone because it requires translation from the device specifications
written in natural languages into the automatons for Nioh. More-
over, the device specifications may not contain enough information
to build the automatons because they focus on describing the de-
vice interfaces to develop device drivers. In contrast, the filtering
rules for Nioh-PT can be specified without knowledge of the device
internals to reduce hypervisor vulnerability windows.

Reducing attack surfaces The large code base and complex-
ity of hypervisors pose security issues. Several researches aim
to reduce the attack surfaces of hypervisors by minimizing their
trusted computing base (TCB). Min-V [26] focuses on the fact
that VMs use limited virtual devices at run-time in cloud envi-
ronments. To minimize the TCB, Min-V analyzes which virtual
devices are required only at boot time and eliminates them from
VMs at run-time. De-privileging hypervisors by introducing a more
privileged security monitor [10, 18, 34, 37–39], employing a mi-
crokernel approach [17, 35], or removing them at run-time [36]
can help to reduce hypervisors’ attack surfaces. Firecracker [4]
and crossvm [12] re-build the part of KVM+QEMU for their spe-
cific purposes. Thanks to their simple designs, these works can
reduce the attack surfaces of the hypervisor. Most works require
a large modification of the hypervisor code base to change the
architecture for the reduction in the attack surfaces. In contrast,
Nioh-PT requires only modest hypervisor changes to introduce.
Hypervisor fuzzing [6, 14, 29, 30, 32, 33] and testing with symbolic

SAC ’23, March 27- March 31, 2023, Tallinn, Estonia M.Senuki et al.

execution [11] can reduce the attack surfaces by uncovering vul-
nerabilities in hypervisors. These methods complement Nioh-PT
because Nioh-PT can provide temporal protection against uncov-
ered vulnerabilities by fuzzing.

Minimizinghypervisor vulnerabilitywindowsHyperTP [25]
proposes the hypervisor transplant to address hypervisor vulner-
ability windows. HyperTP enables replacing quickly the current
data center hypervisor that has a severe security issue with a dif-
ferent hypervisor. Nioh-PT focuses on vulnerability windows in
device emulation that the code base tend to be shared by multiple
hypervisors [21].

7 CONCLUSION
It is a common approach to apply patches to fix vulnerabilities
in device emulation of hypervisors in order to defend against the
exploitation. Since it takes long time to develop the patches, this
approach gives attackers a long grace period, or a vulnerability
window, to exploit the vulnerabilities. We have shown that issuing
illegal I/O sequences is a typical method of exploiting vulnerabilities
in device emulation. Those illegal I/O sequences are not issued
during normal I/O operations. Nioh-PT, proposed in this paper, is a
framework to protect KVM+QEMU against exploitation of device
emulation vulnerabilities. Given filtering rules which specify illegal
I/O sequences, Nioh-PT filters out those illegal sequences to protect
the hypervisors. Since the filtering rules can be specifiedwithout the
internal knowledge on the hypervisors, it is expected to reduce the
vulnerability windows. Nioh-PT with 11 filtering rules introduces
negligible overhead for the filesystem and storage benchmarks by
up to 8%.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was supported by JST AIP Acceleration Research JP-
MJCR22U3, Japan.

REFERENCES
[1] 2020. Filebench. https://github.com/filebench/filebench
[2] 2022. Crate predicates. https://docs.rs/predicates/latest/predicates/
[3] 2022. git://git.qemu.org/qemu.git. https://git.qemu.org/?p=qemu.git
[4] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20). USENIX Association, 419–434.

[5] AMD. 2021. AMD64 Architecture Programmer’s Manual Volume 2: System
Programming. https://www.amd.com/system/files/TechDocs/24593.pdf

[6] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran Shlomo. 2015.
Virtual CPUValidation. In Proceedings of the 25th Symposium onOperating Systems
Principles (SOSP ’15). ACM, 311–327.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM symposium on Operating
systems principles (SOSP ’03). ACM, 164–177.

[8] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In 2005
USENIX Annual Technical Conference (USENIX ATC 05). USENIX Association.

[9] CrowdStrike. 2015. VENOM Vulnerability Details. https://www.crowdstrike.
com/blog/venom-vulnerability-details/

[10] Liang Deng, Peng Liu, Jun Xu, Ping Chen, and Qingkai Zeng. 2017. Dancing
with Wolves: Towards Practical Event-Driven VMM Monitoring. In Proceedings
of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’17). ACM, 83–96.

[11] Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy. 2018. MultiNyx: A Multi-
Level Abstraction Framework for Systematic Analysis of Hypervisors. In Pro-
ceedings of the Thirteenth EuroSys Conference (EuroSys ’18). ACM, Article 23.

[12] Google. 2022. crosvm - The Chrome OS Virtual Machine Monitor. https:
//chromium.googlesource.com/chromiumos/platform/crosvm/

[13] Red Hat. 2022. Red Hat Bugzilla - Main Page. https://bugzilla.redhat.com/
[14] Andrew Henderson, Heng Yin, Guang Jin, Hao Han, and Hongmei Deng. 2017.

VDF: Targeted Evolutionary Fuzz Testing of Virtual Devices. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 3–25.

[15] Intel. [n. d.]. Intel Virtualization Technology (Intel VT). https://www.
intel.com/content/www/us/en/virtualization/virtualization-technology/
intel-virtualization-technology.html

[16] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. KVM:
the Linux Virtual Machine Monitor. In In Proceedings of the 2007 Ottawa Linux
Symposium (OLS’07).

[17] Shih-Wei Li, John S. Koh, and Jason Nieh. 2019. Protecting Cloud Virtual Machines
from Hypervisor and Host Operating System Exploits. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, 1357–1374.

[18] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing Guan. 2020. (Mostly)
Exitless VM protection from untrusted hypervisor through disaggregated nested
virtualization. In Proceedings of the 29th USENIX Conference on Security Sympo-
sium. USENIX Association, 1695–1712.

[19] National Institute of Standards and Technology. 2020. CVE-2016-7909. https:
//nvd.nist.gov/vuln/detail/CVE-2016-7909

[20] National Institute of Standards and Technology. 2020. CVE-2020-13361. https:
//nvd.nist.gov/vuln/detail/CVE-2020-13361

[21] National Institute of Standards and Technology. 2021. CVE-2015-3456. https:
//nvd.nist.gov/vuln/detail/CVE-2015-3456

[22] National Institute of Standards and Technology. 2021. CVE-2015-5279. https:
//nvd.nist.gov/vuln/detail/CVE-2015-5279

[23] National Institute of Standards and Technology. 2021. CVE-2020-15863. https:
//nvd.nist.gov/vuln/detail/CVE-2020-15863

[24] National Institute of Standards and Technology. 2022. CVE-2020-13800. https:
//nvd.nist.gov/vuln/detail/CVE-2020-13800

[25] Tu Dinh Ngoc, Boris Teabe, Alain Tchana, Gilles Muller, and Daniel Hagimont.
2021. Mitigating vulnerabilitywindowswith hypervisor transplant. In Proceedings
of the Sixteenth European Conference on Computer Systems (EuroSys ’21). ACM,
162–177.

[26] Anh Nguyen, Himanshu Raj, Shravan Rayanchu, Stefan Saroiu, and AlecWolman.
2012. Delusional boot: securing hypervisors without massive re-engineering. In
Proceedings of the 7th ACM european conference on Computer Systems (EuroSys
’12). ACM, 141–154.

[27] Junya Ogasawara and Kenji Kono. 2017. Nioh: Hardening The Hypervisor by
Filtering Illegal I/O Requests to Virtual Devices. In Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC 2017). ACM, 542–552.

[28] ORACLE. 2022. Oracle VM VirutalBox. https://www.virtualbox.org
[29] Tavis Ormandy. 2007. An empirical study into the security exposure to hosts of

hostile virtualized environments (CanSecWest ’07).
[30] Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang Jia, Shouling Ji, Chunming

Wu, Xinlei Ying, Jiashui Wang, and Yanjun Wu. 2021. V-Shuttle: Scalable and
Semantics-Aware Hypervisor Virtual Device Fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS ’21).
ACM, 2197–2213.

[31] Rust Team. 2022. Rust. https://www.rust-lang.org/
[32] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten

Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine
Types. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Asso-
ciation, 2597–2614.

[33] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten
Holz. 2020. HYPER-CUBE: High-Dimensional Hypervisor Fuzzing. In 27th Annual
Network and Distributed System Security Symposium, NDSS. The Internet Society.

[34] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang,
and Jinming Li. 2017. Deconstructing Xen. In 24th Annual Network and Distributed
System Security Symposium, NDSS. The Internet Society.

[35] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-Based
Secure Virtualization Architecture. In Proceedings of the 5th European Conference
on Computer Systems (EuroSys ’10). ACM, 209–222.

[36] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. 2011. Eliminating
the Hypervisor Attack Surface for a More Secure Cloud. In Proceedings of the
18th ACM Conference on Computer and Communications Security (CCS ’11). ACM,
401–412.

[37] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang. 2012. Isolating
Commodity Hosted Hypervisors with HyperLock. In Proceedings of the 7th ACM
European Conference on Computer Systems (EuroSys ’12). ACM, 127–140.

[38] Chiachih Wu, Zhi Wang, and Xuxian Jiang. 2013. Taming Hosted Hypervisors
with (Mostly) Deprivileged Execution. In 20th Annual Network and Distributed
System Security Symposium, NDSS. The Internet Society.

[39] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. CloudVisor:
retrofitting protection of virtual machines in multi-tenant cloud with nested
virtualization. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). ACM, 203–216.

https://github.com/filebench/filebench
https://docs.rs/predicates/latest/predicates/
https://git.qemu.org/?p=qemu.git
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.crowdstrike.com/blog/venom-vulnerability-details/
https://www.crowdstrike.com/blog/venom-vulnerability-details/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://chromium.googlesource.com/chromiumos/platform/crosvm/
https://bugzilla.redhat.com/
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://nvd.nist.gov/vuln/detail/CVE-2016-7909
https://nvd.nist.gov/vuln/detail/CVE-2016-7909
https://nvd.nist.gov/vuln/detail/CVE-2020-13361
https://nvd.nist.gov/vuln/detail/CVE-2020-13361
https://nvd.nist.gov/vuln/detail/CVE-2015-3456
https://nvd.nist.gov/vuln/detail/CVE-2015-3456
https://nvd.nist.gov/vuln/detail/CVE-2015-5279
https://nvd.nist.gov/vuln/detail/CVE-2015-5279
https://nvd.nist.gov/vuln/detail/CVE-2020-15863
https://nvd.nist.gov/vuln/detail/CVE-2020-15863
https://nvd.nist.gov/vuln/detail/CVE-2020-13800
https://nvd.nist.gov/vuln/detail/CVE-2020-13800
https://www.virtualbox.org
https://www.rust-lang.org/

	Abstract
	1 Introduction
	2 Device Virtualization
	2.1 Device Emulation in Hypervisors
	2.2 Vulnerabilities in Device Emulator
	2.3 Problems in Vulnerability Response

	3 Threat Model
	4 Design and Implementation
	4.1 Nioh-PT Overview
	4.2 Slim Monitoring Layer
	4.3 I/O Request Filtering Engine
	4.4 Implementation

	5 Evaluation
	5.1 Security Analysis
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

