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Abstract
Container technology improves storage efficiency by sharing
base images through overlay file systems (overlayfs). Over-
layfs enables temporary modifications while preserving orig-
inal files by merging multiple directories into a single unified
view. However, in container-in-container environments, the
current overlayfs approach incurs inefficiency in terms of
storage usage, as it does not support nesting due to file dele-
tion operations. To delete a preserved original file, a special
file is created indicating that the file is deleted in the over-
layfs, but this mechanism lacks expressiveness for nesting.
This paper introduces ShadowWhiteout, a new representa-
tion for file deletion in overlayfs. We identify key technical
challenges and implement a ShadowWhiteout-capable over-
layfs. Our system allows nesting overlayfs while maintaining
reasonable runtime overhead.

CCS Concepts: • Software and its engineering → File
systems management.
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1 Introduction
The overlay file system (overlayfs) [2] is now widely used for
container environments [8], enabling the compact construc-
tion of container images. Container engines use overlayfs
to present a unified file system view as a virtual root file
system to the container instance. This root file system com-
bines a series of read-only layers (files and directories) with a
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single read-write layer. Any changes made by the container
instances are stored in the read-write layer using a file granu-
larity copy-on-write approach, as deltas from the underlying
read-only layers. This allows container instances to have
individual file systems while sharing a large portion of the
base container images, optimizing storage efficiency that
contributes to a higher degree of container consolidation.
However, due to file deletion operations in overlayfs, it

does not support nesting because it cannot use another over-
layfs for its read-write layer. This limitation incurs storage
inefficiency in container-in-container (CinC) environments,
which are becoming increasingly popular. CinC setups, such
as Docker-in-Docker (DinD) [12] and Kubernetes-in-Docker
(KinD) [14], are in high demand due to their many use cases
in continuous integration and testing of container-based de-
velopment systems, among others [11, 13]. Fig. 1a shows
the current CinC setup. The container engine creates file
systems other than overlayfs (e.g., Ext4 [9]) in the outer con-
tainer instance at launch by mounting a directory on the
host through Docker volumes, and all data associated with
the inner containers is stored in this additional data store.
Since the inner container images are stored outside the outer
container images, this approach leads to storage inefficiency
by preventing the sharing of inner container images across
multiple outer container instances.
To deal with this issue, we introduce ShadowWhiteout

(S-whiteout for short). The original overlayfs performs the
deletion operation by creating a special file called whiteout
in the read-write layer, which hides the deleted file from
the unified view. Unfortunately, the design of the whiteout
file type does not account for nesting, preventing each over-
layfs layer from independently creating its own dedicated
whiteout file (§ 2.1). In contrast, S-whiteout functions as a
whiteout file for a specific overlayfs layer while acting as a
normal file for other layers. We design the S-whiteout file
type by building upon xwhiteout [10], an extended whiteout
type specifically designed for read-only layers (§ 2.2), by ad-
dressing two key aspects: 1) identifying the file operations in
a read-write layer overlayfs that must support the creation
of S-whiteout files instead of normal whiteout files and 2)
selecting an appropriate file type to facilitate efficient cache
management for directory reads in overlayfs. We design and
implement an S-whiteout capable overlayfs (§ 3) to achieve
the CinC setup shown in Fig. 1b while keeping reasonable
performance overhead (§ 4).
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(a) CinC environments expose host file systems to allow inner con-
tainers to use overlayfs. This additional data store is created for
each outer container instance at launch time. The images of inner
containers cannot be included in the portable outer container image.

 read-only layer0

 read-write layer

host file system

/image0

/LinuxImage

 overlay file system

 read-only LinuxImage

/writable

read-write layer

overlay file system

read-only layer 0

read-only LinuxImage

Inner container

/writable

/image0 /LinuxImage

Outer container

/image0 /LinuxImage

Configured by host

Configured by outer container

(b) Our goal is to enable inner containers to use overlayfs on the
overlayfs mount for outer containers in CinC environments. This
will allow the images of inner containers to be included in a portable
and sharable image of the outer container.

Figure 1. File system construction for containers in CinC environments. The arrows in this figure indicate which directory
corresponds to each layer in the overlayfs mount.

2 Challenges to nest overlayfs
This section describes the challenges of making overlayfs
nestable through the architecture of overlayfs.

2.1 Overlayfs
Fig. 2 illustrates how overlayfs presents a unified view by
combining multiple layers. On the left side of Fig. 2, a typ-
ical usage of overlayfs is presented, which combines three
directories from the host file system (e.g., Ext4). In this con-
figuration, /image0 and /image1 serve as read-only layers,
while /writable serves as the read-write layer. Since all
changes in overlayfs are stored in the read-write layer, the
read-write layer is positioned at the top among all layers
while the read-only layers can consist of multiple layers. In
overlayfs terminology, the read-only layers are referred to as
lower file systems, and the read-write layer is referred to as
an upper file system. To avoid confusion, we use the terms
“read-only layers” and “read-write layer” in this paper.

Lookup. When an object (e.g., a file) with the same name
exists in multiple layers, the version in the topmost layer is
visible in the unified view. For example, file0 in the read-
only layer 1 and file1 in the read-only layer 0 are visible in
the unified view on the left side of Fig. 2 because they are
the files in the topmost layer for this overlayfs mount.

Read a directory. When a readdir request is made on a
directory in the unified view, overlayfs reads the directory
from all layers and creates a combined name list from the
results of all layers. This combined name list is cached until
the file descriptor for the directory is closed. In the left over-
layfs mount shown in Fig. 2, once the root directory is read,
four files are cached in the name list.

Modification. When creating a new file in the unified
view, overlayfs creates the file in the read-write layer. If a file
in one of the read-only layers is modified in the unified view,
a file granularity copy-on-write operation is performed. On
the left side of Fig. 2, when the container modifies file2, the
file is first copied into the read-write layer from the read-only
layer 0, and then the contents of file2 in the read-write
layer are updated accordingly.

Remove. Removing a file that exists only in the read-write
layer from the unified view is straightforward; overlayfs sim-
ply removes the file from the read-write layer. However, if a
file with the same name exists in one or more read-only lay-
ers, overlayfs needs to create a whiteout file in the read-write
layer to hide the file from the unified view. The whiteout file
in the read-write layer is represented as a character file with
0/0 device number. During file lookups, if the topmost file
is a whiteout file, it becomes invisible in the unified view.
For example, if file3 is a whiteout file in the read-write
layer (as shown on the left side in Fig. 2), it will be hidden in
the unified view, even though file3 exists in the read-only
layer 0.

Challenge 1: Fixed type of whiteout file is not suitable
for nesting overlayfs. As mentioned, whiteout files are rep-
resented as a specific character file in the read-write layers.
However, this binary information (i.e., whether a given file is
a whiteout or not) lacks the expressiveness needed for nest-
ing overlayfs. The right side of Fig. 2 illustrates how file3
appears in the unified view of the top overlayfs when the
underlying overlayfs is used as the read-write layer. Since
file3 is a whiteout file, it is hidden from the unified view
of the underlying overlayfs. Consequently, when the top
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Figure 2. Overview of overlayfs architecture. The left side is a typical setup of overlayfs. The right side shows the case of
nesting overlayfs. The top overlayfs uses the underlying overlayfs as its read-write layer. file3, a normal whiteout, is hidden
by the underlying overlayfs resulting in file3 in the readonly layer is visible to the top overlayfs. file4, an S-whiteout, is
visible to the top overlayfs and hidden by it in the unified view of the top overlayfs.

overlayfs looks up file3, it finds it in the read-only layer
but not in the read-write layer, causing file3 from the read-
only layer to appear in the top overlayfs. Even if the top
overlayfs creates a whiteout file, it remains invisible because
it is interpreted by the underlying overlayfs. In this example,
file3 cannot be removed from the top overlayfs.

Overlayfs attribute. Overlayfs uses extended attributes
that start with “overlay.” to manage metadata by associat-
ing these attributes with files and directories. For example,
overlayfs uses an “opaque” attribute for directories. When a
directory is created after removing a directory of the same
name that exists in one of the read-only layers, overlayfs
sets the “overlay.opaque” attribute to “y” for the newly cre-
ated directory. This information is crucial because overlayfs
needs to determine whether to look up the read-only layers.
If the value of “opaque” is “y”, overlayfs only needs to look up
the read-write layer; if “opaque” is not set for the directory,
overlayfs needs to combine results from all layers.

Overlayfs for container environments. The overlayfs
architecture aligns well with container image construction.
One benefit of using containers to build applications is that
each container has its own root file system, which enhances
reproducibility.While storage usage could become inefficient
if every container included all files in its root file system,
containers avoid the inefficiency by sharing a base image, for
example, a Linux distribution like Ubuntu image. To achieve
both objectives simultaneously, overlayfs maintains base
images as immutable by keeping them in read-only layers,
while allowing containers to update their content at runtime
by saving changes in a dedicated read-write layer for each
container. In academic research, container storage has been
studied mainly for performance [1, 4, 6, 15–22], but our work
focuses on extending the capabilities of overlayfs.

read-only layer 0
overlay file system

read-write layer
overlay file system

file0

X

file0

read-only layer 1

overlay file system
read-write layer

read-only layer

file0

file0

overlay.whiteout="y"
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Figure 3. Extended whiteout (xwhiteout) and escaping over-
layfs extended attributes.

2.2 Extended whiteout for overlayfs
Although overlayfs did not initially assume the use case of
nesting overlayfs, it now supports being used as a read-only
layer for another overlayfs [10], driven by use cases likemak-
ing overlayfs mount on ComposeFS [5]. To enable this usage,
two major changes have been introduced into the mainline
Linux kernel. The first major change involves escaping over-
layfs extended attributes. The extended attributes that start
with “overlay.” are handled by the underlying overlayfs be-
cause they only contain the binary information whether
those attributes are for overlayfs or not, similar to the white-
out scenario. To address this issue, overlayfs uses a special
prefix of “overlay.overlay.” instead of “overlay”. This prefix
allows the attributes to be interpreted by a specific layer of
overlayfs, with the layer being determined by the number of
prefixes used. Fig. 3 shows how overlayfs handles the over-
layfs extended attribute. The underlying overlayfs identifies
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that the attribute starts with “overlay.” and removes the first
“overlay.” from the “overlay.overlay.whiteout”. The top over-
layfs also recognizes that the attribute starts with “overlay.”
and interprets it as “overlay.whiteout” (regarding whiteout
attribute described later) because there are no additional
prefixes in the attribute.

The second major change is the introduction of extended
whiteout (xwhiteout for short) for read-only layers. Unlike
the original whiteout file (which is represented as a character
file), xwhiteout is represented as a zero-size regular file with
the attribute “overlay.whiteout”. By combining this approach
with the escaping of overlayfs extended attributes, xwhiteout
files can be interepreted by a specific layer of overlayfs based
on the number of prefixes in the attribute. For example, in
Fig. 3, file0 can work as a whiteout file for the top over-
layfs while being treated as a regular file for the underlying
overlayfs. The underlying overlayfs handles file0 as a reg-
ular file because its attribute is “overlay.overlay.whiteout”.
In contrast, for the top overlayfs, the attribute of file0 is
“overlay.whiteout”, as the underlying overlayfs removes one
“overlay” from its attribute. Consequently, file0 is recog-
nized as a whiteout file by the top overlayfs.

Even though xwhiteout is available instead of the original
whiteout, overlayfs is still not usable as a read-write layer for
another overlayfs. This limitation arises because xwhiteout
was designed to enable overlayfs to work as a read-only layer
for another overlayfs. The two challenges remain in applying
the xwhiteout design to nesting overlayfs by using another
overlayfs for the read-write layers.

Challenge 2: No file operations in overlayfs create
xwhiteout files. Unlike the normal whiteout file, xwhiteout
files are never created by overlayfs. Overlayfs assumes that
xwhiteout files are created during the construction of read-
only layers by userspace tools or may be manually created
by maintainers as needed. In contrast, when overlayfs is used
as a read-write layer for another overlayfs, the top overlayfs
attempts to create whiteout files in various scenarios at run-
time. For example, if the inner container deletes a file while
it is still retained in the outer container, the nestable over-
layfs needs to indicate that the file is invisible to the inner
container but visible to the outer container. It must provide a
means to handle such situations at runtime without resorting
to the creation of the normal whiteout files.

Challenge 3: Cache management of name lists dur-
ing directory reads incurs a performance overhead. To
avoid the overhead of checking xwhiteout files during direc-
tory reads, overlayfs employs two optimizations. The first
optimization limits the directories that require xwhiteout
checks by setting the extended attribute “overlay.opaque” to
“x” on directories containing xwhiteout files. With this in-
formation, overlayfs only performs xwhiteout checks when
reading those specific directories. Note that this setting can

also be applied manually by userspace tools or maintain-
ers. The second optimization defers the check for xwhiteout
files until the directory is actually read. However, this can
unintentionally block the removal of a directory if a file is
hidden by an xwhiteout file. During the removal of a direc-
tory, overlayfs reconstructs the caches of files in the name
list for that directory without checking xwhiteout files. As a
result, when determining if the directory is empty, the pres-
ence of the xwhiteout file in the name list leads overlayfs
to incorrectly conclude that the directory is not empty. To
avoid this issue, overlayfs needs to check for xwhiteout files
for every regular file during cache construction. However,
this check introduces significant overhead, especially if the
directory contains many files. As shown in Fig. 5, the exe-
cution time of the ls dir command is 6.6× slower when
a single xwhiteout file is present in a directory containing
800,000 regular files.

3 ShadowWhiteout-capable overlayfs
We introduce ShadowWhiteout (S-whiteout) to enable over-
layfs to use another overlayfs for its read-write layer by
addressing the following three challenges described in § 2.

• Challenge 1: Fixed type of whiteout file is not suitable
for nesting overlayfs.

• Challenge 2: No file operations in overlayfs create
xwhiteout files.

• Challenge 3: Cache management of name lists during
directory reads incurs a performance overhead.

In summary, S-whiteout is a character file that includes the
extended attribute “overlayfs.whiteout”. This file type com-
bines the advantages of both normal whiteouts and xwhite-
outs. Our S-whiteout-capable overlayfs creates S-whiteout
files instead of normal whiteout files in three file operations.
As a result, the top overlayfs can remove files from its unified
view by creating S-whiteout files in its read-write layer, as
demonstrated by file4 in Fig. 2, even when it uses another
overlayfs mount for the read-write layer.

Using the extended attributes to identify whiteout
files. To address Challenge 1, we adopt the concept of the
xwhiteout file. Although xwhiteout files were originally pro-
posed for read-only layers, the nestable extended attribute
is effective for read-write layers as well.

Three file operations support the creation of S-whiteout.
To address Challenge 2, we identify which file operations
in overlayfs need to support the creation of S-whiteout files
through unit tests and real-world workloads (in § 4). Based
on this analysis, three file operations are deemed necessary
for support. First, when the top overlayfs removes a file using
whiteout files, it creates an S-whiteout file instead of a normal
whiteout file. Since the top overlayfs can determine whether
its read-write layer is an overlayfs through the dentry, it
simply creates an S-whiteout file upon identification.
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Figure 4. Execution time of unlink and rename.

Second, the underlying overlayfs needs to support rename
whiteout requests. The top overlayfs issues this request when
renaming a file that exists in the read-only layer to hide
the source file name from its unified view. In response, the
underlying overlayfs creates an S-whiteout file with the same
name as the source file.

Third, the underlying overlayfs needs to support requests
to create special files. Some userspace tools directly create
normal whiteout files by using mknod during image construc-
tion. When the underlying overlayfs receives this request,
it checks whether the special file corresponds to a normal
whiteout file; if so, it creates an S-whiteout file instead of a
normal whiteout file.

Representing S-whiteout as a character file for effi-
cient cache management when reading directories. To
address Challenge 3, we use a character file for S-whiteout
representation, unlike xwhiteout. Xwhiteout files are repre-
sented as size-zero regular files, which require optimizations
such as deferring checks during directory reads. In contrast,
checks for normal whiteout files are not deferred in overlayfs
thanks to their file type. For this reason, S-whiteout inherits
the file type of normal whiteout files.

4 Experimental results
We evaluate the performance overhead associated with S-
whiteout and nesting of overlayfs in CinC environments.
We implement S-whiteout-capable overlayfs on Linux kernel
6.7.11. For this experiment, we execute workloads on a server
featuring two 48-core Intel Xeon Platinum 8468 CPUs, 512
GB of RAM, and 800 GB of KIOXIA CD8 mixed use NVMe
SSD and we use Ext4 for the root file system.

4.1 Microbenchmark: unlink and rename

In ourmicrobenchmark, wemeasure execution time of unlink
and rename for 8,192 files, comparing Ext4, single overlayfs,
and nested overlayfs. We use the original overlayfs for the
single overlayfs setup and use S-whiteout to nest overlayfs.
Fig. 4 shows the execution time for each operation. Adding
a single overlayfs increases execution time by 0.12 and 0.11
seconds for unlink, and by 0.26 seconds for rename. The
overhead from S-whiteout is negligible compared to the im-
pact of adding one overlayfs layer.
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Figure 5. Execution time of ls dir with different number
of regular files in a directory that has one whiteout file.
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Figure 6. Container launch time in Docker-in-Docker.

4.2 Performance impact on directory reads
To evaluate the effectiveness of S-whiteout against Chal-
lenge 3, we measure the execution time of the command
ls dir with varying numbers of files in the directory. The
target directory contains one removed file, indicating the
presence of a single whiteout file in the read-write layer.
We compare the performance of nested overlayfs with S-
whiteout to that of native overlayfs and nested overlayfs
with S-whiteout-regular, which uses a regular file instead of
a character file to represent S-whiteout. Fig. 5 shows nesting
overlayfs with S-whiteout does not incur significant over-
head, whereas nesting overlayfs with S-whiteout-regular
incurs a worst-case overhead of 6.6×. This overhead arises
from the need to check whiteout files for cache construction.
When using S-whiteout-regular, overlayfs must perform a
whiteout check for every regular file, leading to increased
costs as the number of files in the directory grows.

4.3 Containers launch time in Docker-in-Docker
To see the performance impact of nesting overlayfs in CinC
environments, we measure the launch time of Docker con-
tainers in a Docker container by porting HelloBench [7] with
three images selected based on their popularity by the previ-
ous study [6]. We compare nesting overlayfs with S-whiteout
to two different setups. The one setup uses Docker volumes,
allowing the inner container to access the exposed Ext4. The
other setup uses deep copy, which does not require the vol-
umes but necessitates copying every image to launch inner
containers due to the absence of overlayfs in the container.
As shown in Fig. 6, nesting overlayfs with S-whiteout does
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Figure 7. Filebench performance in Docker-in-Docker.

not incur significant overhead thanks to sharing container
images, while the deep copy setup incurs overhead of up to
2.75× due to many file copies.

4.4 Filebench performance in Docker-in-Docker
To evaluate the I/O performance of inner containers, we use
several workloads from Filebench. We adjust the number
of files based on previous studies [3, 6]. The file counts are
200,000 for fileserver, 440 for oltp, 1.25 M for webserver,
and 250,000 for both mongo and varmail. We observe a
performance overhead of up to 15% in mongo and varmail
when using S-whiteout. Since only the S-whiteout setup uses
nested overlayfs, read, write, and unlink incur overhead
due to the additional recursive operation introduced by nest-
ing overlayfs compared to other setups. In the remaining
workloads, the impact of synchronization operations (e.g.,
locks) outweighs that of the recursive operations, making
the performance overhead from nesting overlayfs negligible.

5 Discussion
Use cases of CinC and S-whiteout capable overlayfs.

One of the primary use cases of CinC setups is testing sys-
tems or applications that use container technology. For in-
stance, KinD enables users to test Kubernetes in Docker,
while DinD allows users to test Dockerized applications in
Docker. However, the original overlayfs does not support
nesting, which means that outer Docker containers must
reserve a read-write data store (i.e., volumes) outside of read-
only images for inner container engines. As a result, im-
ages for inner containers are not included in portable outer
container images (Fig. 1a). S-whiteout capable overlayfs ad-
dresses this issue by allowing nesting, thereby enabling the
inclusion of inner container images in portable outer con-
tainer images (Fig. 1b).

Security. S-whiteout capable overlayfs inherits the secu-
rity model of the original overlayfs. Since any modifications
made by containers to the unified view of the original over-
layfs are stored in the read-write layer on the host, the host
has visibility into all container files. Conversely, containers
are only able to see files that are exposed by the host. When
nesting overlayfs for inner containers, the outer containers
have greater capabilities than the inner containers, and the
host retains the highest level of capability, still having greater
visibility and control than the outer containers.

6 Conclusion
This paper presents ShadowWhiteout for optimizing storage
efficiency in container-in-container environments by nest-
ing overlayfs. By examining the architecture of overlayfs,
we identify three challenges associated with nesting over-
layfs and demonstrate how S-whiteout-capable overlayfs
addresses them.
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