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ABSTRACT
Vulnerabilities in hypervisors are crucial in multi-tenant clouds
and attractive for attackers because a vulnerability in the hyper-
visor can undermine all the virtual machine (VM) security. This
paper focuses on vulnerabilities in instruction emulators inside
hypervisors. Vulnerabilities in instruction emulators are not rare;
CVE-2017-2583, CVE-2016-9756, CVE-2015-0239, CVE-2014-3647,
to name a few. For backward compatibility with legacy x86 CPUs,
conventional hypervisors emulate arbitrary instructions at any time
if requested. This design leads to a large attack surface, making it
hard to get rid of vulnerabilities in the emulator.

This paper proposes FWinst that narrows the attack surface against
vulnerabilities in the emulator. The key insight behind FWinst is
that the emulator should emulate only a small subset of instruc-
tions, depending on the underlying CPU micro-architecture and
the hypervisor configuration. FWinst recognizes emulation con-
texts in which the instruction emulator is invoked, and identifies a
legitimate subset of instructions that are allowed to be emulated
in the current context. By filtering out illegitimate instructions,
FWinst narrows the attack surface. In particular, FWinst is effective
on recent x86 micro-architectures because the legitimate subset be-
comes very small. Our experimental results demonstrate FWinst
prevents existing vulnerabilities in the emulator from being ex-
ploited onWestmeremicro-architecture, and the runtime overhead
is negligible.
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1 INTRODUCTION
Vulnerabilities in hypervisors are crucial in multi-tenant clouds be-
cause they can undermine all the virtual machine (VM) security. If
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a vulnerability results in VM Escape, a malicious VM breaks out of
itself, gets the full control over the hypervisor, and attacks other
co-located VMs using the privilege of the hypervisor. Since the hy-
pervisor is the most privileged, the malicious VM can do whatever
it wants. Unfortunately, there are many reported vulnerabilities in
the hypervisor. As of November 2017, 110 CVEs are reported for
KVM [8] and 240 vulnerabilities are in Xen Security Advisories
(XSA) [15].

This paper focuses on vulnerabilities in instruction emulation in
the hypervisor. Ideally, the hypervisor would only need to emulate
a small subset of the instruction set. However, on x86 architecture,
the hypervisor may be required to emulate most instructions [4, 5].
Instructions other than sensitive ones are emulated in the follow-
ing cases:

• Port I/O (PIO): When an I/O port is accessed, the port I/O
instructions are interpreted to emulate the accessed I/O de-
vice.

• Memory Mapped I/O (MMIO): An access to an MMIO re-
gion is trapped by the hypervisor and the accessing instruc-
tion is interpreted by the instruction emulator to emulate
the accessed I/O device.

• ShadowPageTables: Prior to Nehalemmicro-architecture,
Intel CPUs did not support second level address translation.
To keep the consistency between ‘’shadow” and ‘’guest” page
tables, the hypervisor tracked changes of guest page tables
by trapping and emulating VM writes to them.

• RealMode: Prior toWestmeremicro-architecture, Intel CPUs
prevented real-mode code from running in guest-mode. Since
CPUs boot in real-mode, hypervisors began with emulating
the virtual CPU execution [11].

• Migration: To allowVMmigration between Intel and AMD
CPUs, some hypervisors trap and emulate vendor-specific
instructions such as sysenter (specific to Intel). If sysenter
is executed on AMD, the hypervisor traps and emulates it.

Emulating most of the x86 instructions is complicated and error-
prone. In fact, vulnerabilities in x86 emulators are not rare. To
name a few, CVE-2016-9756 points out vulnerabilities in far jump
and far ret. CVE-2017-2584 reports those in fxrstor, fxsave,
sgdt, and sidt. CVE-2015-0239 and CVE-2017-2583 report vulner-
abilities in sysenter and mov SS, respectively. CVE-2016-9756,
CVE-2017-2584, CVE-2015-0239, CVE-2017-2583 are all related to
vulnerabilities in the emulator.Makingmattersworse, Amit et al. [4]
demonstrate any instructions can be forced to be emulated. This
new attack vector allows an attacker to exploit a vulnerability in
any instructions.

This paper presents FWinst, which raises the bar for attacks on
instruction emulation by narrowing the attack surface against it.
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The key insight behind FWinst is twofold. First, the emulator sup-
ports a wide range of x86 instructions only for backward com-
patibility. Recent x86 micro-architectures diminish the need for
instruction emulation. For example, allowing real-mode in guest-
mode eliminates the need for emulating real-mode code in hyper-
visors. Supporting second level address translation eliminates the
need for emulating VM writes to guest page tables.

Second, a legitimate subset of instructions to be emulated de-
pends on the emulation context in which the emulator is invoked. If
the emulator accepts only the legitimate set of instructions in each
context, the attack surface is narrowed because the attacker cannot
exploit vulnerabilities in instructions not legitimate in the current
context. FWinst identifies five contexts: 1) PIO context, 2) MMIO
context, 3) shadow page table context, 4) real-mode context, and
5) migration context, and is given a list of legitimate instructions
for each context. For example, in the migration context, sysenter,
which is specific to Intel CPU, is emulated only on AMD CPUs; its
emulation is denied on Intel CPUs. In the MMIO context, the em-
ulator denies jmp instruction because an MMIO region is accessed
only through memory access instructions such as mov.

To narrow the attack surface, FWinst uses a hypervisor’s config-
uration and determines which context is valid. When a hypervisor
is invoked to emulate an instruction, FWinst checks if the current
context is valid. If it is not, no instruction is emulated. For exam-
ple, if second level address translation is enabled, no instruction
should be emulated in the shadow page table context. If the cur-
rent context is valid, FWinst passes only the legitimate instruction
to the emulator. For example, in the MMIO context, the legitimate
set of instructions are memory-access instructions. Emulation of,
for instance, jmp instruction, is denied.

We have implemented a prototype of FWinst on KVM (Linux
version 4.8), which runs on IntelWestmeremicro-architecturewith
the full-fledged support for virtualization turned on. Our experi-
ment demonstrates FWinst can defend against several attacks on
vulnerabilities in the emulation of sysenter, far jump, far ret,
mov SS, fxrstor, fxsave, sgdt, sidt, clflush and hint-nop in
KVM (Linux version 4.8). It also shows the performance overheads
of FWinst is negligible. Furthermore, the code size of FWinst is
small (279 LoC) and unlikely to introduce new security holes.

The paper is organized as follows. Section 2 describes the threat
model and analyzes the vulnerabilities in instruction emulation.
Section 3 shows the design and implementation of FWinst, and Sec-
tion 4 reports the experimental results. Section 5 relates our work
with others and Section 6 concludes the paper.

2 THREAT MODEL AND VULNERABILITY
ANALYSIS

2.1 Treat Model
Before describing the threat model, this section explains how an
instruction emulator is invoked inside the hypervisor, targeting on
Intel CPU with virtualization support (VT-x). Figure 1 a) illustrates
the internal architecture of typical hypervisors. Whenever some
support is necessary from the hypervisor, CPU causes a “VMExit”
and the control is transferred from a guest VM to the hypervisor. To
indicate the reason the VMExit has occurred, a small integer called
“VMExit reason” is set by CPU in a special memory area (VMCS;

VM control structure). On the VMExit, a handler dedicated to each
VMExit reason is invoked. For example, when a guest VM executes
cpuid instruction, the handler for cpuid is automatically invoked
without decoding cpuid instruction.

Decoding VMExiting instructions is required in some handlers
to get the exact operations of those instructions. For example, if an
MMIO region is accessed, a VMExit is caused with EPT violation
(illegal memory access) as the VMExit reason. In this case, the in-
struction emulator is invoked to decode the VMExiting instruction
to get what operation is done on the MMIO region. As described
in Section 1, hypervisors on Intel x86 emulate instructions in the
following contexts: 1) Port I/O, 2) MMIO, 3) Shadow Page Table, 4)
Real Mode, and 5) Migration.

At first glance, an attacker appears unable to exploit a vulnera-
ble instruction if it does not cause any VMExit because the emula-
tor is not invoked. Suppose that an attacker is trying to exploit a
vulnerability in the emulation of sysenter instruction (CVE-2015-
0239). When sysenter is executed on Intel x86, it does not cause
any VMExits and thus the emulator is not invoked. Interestingly,
Amit et al. [4] have proposed a new attack vector to force the emu-
lator to decode whichever instruction the attacker wants to exploit.
This attack vector is a timing attack and exploits a short time in-
terval between the VMExit and the emulator invocation. In Fig-
ure 2, an attacker accesses an MMIO region to cause a VMExit,
and quickly replaces the accessing instruction with a vulnerable in-
struction (sysenter). If the replacement finishes before the VMEx-
iting instruction (mov) is fetched, the emulator fetches and decodes
the vulnerable instruction.

Our threat model is as follows. We assume that a guest operat-
ing system is not trustworthy; it may have security holes and be
subverted by an attacker. Together with the attack vector proposed
by Amit et al., this assumption implies that an attacker can force
any instruction to be emulated through anMMIO region. Note that
an attack on the instruction emulator is sometimes possible from
the user space. Recent Linux allows a small portion of the MMIO
region to be exposed to user space; HPET (High Precision Event
Timer) can be configured to be exposed to user space in Linux.

2.2 Vulnerability Analysis
Asmentioned in Section 1, the emulator in the hypervisor supports
many instructions for backward compatibility. The complexity of
x86 instruction set leads to vulnerabilities in the emulator. In par-
ticular, instructions rarely used in modern environments are not
tested and maintained well and are likely to be vulnerable. CVE-
2015-0239 reports a vulnerability in the emulation of sysenter in
16-bit mode, which results in the privilege escalation. CVE-2016-
9756 reports vulnerabilities in the emulation of far jump and
far ret in 32-bit mode, which lead to the leak of the host ker-
nel stack. More vulnerabilities are reported; CVE-2017-2584, CVE-
2017-2583, CVE-2014-8480, CVE-2014-3647, CVE-2016-8630, and
CVE-2014-8481 are all related to vulnerabilities in the emulator.

The goal of FWinst is to narrow an attack surface against vul-
nerabilities in instruction emulation. Our insight behind FWinst
is twofold. First, emulation of most instructions is required for
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a) Ordinary Hypervisor. A VMExit handler invokes the
instruction emulator regardless of the emulation context.

VM-exit

Guest VM

Instruction Emulator
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CPUIDI/O instruction EPT Violation Exception or NMI

......
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FWinst
Instruction Filter VCPU status

Collects information of Hypervisor
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b) Hypervisor with FWinst. FWinst filters out instructions that
should not be emulated in the current context.

Figure 1: Instruction Emulator in Ordinary Hypervisors and in Hypervisors with FWinst.

mov rax, [MMIO]

Hypervisor

sysenter

time

VMExit handler
(MMIO is accessed)

VMExit

Instruction Emulator

Read “vulnerable” instructionGuest VM

Replaced by an attacker

invoke

Figure 2: Timing Attack on Instruction Emulation.

backward compatibility. If the hypervisor runs on CPUs with full-
fledged support for virtualization, the number of emulation con-
texts that require instruction emulation becomesmuch smaller.While
the hypervisor on legacy x86 micro-architectures must support 5
emulation contexts, the hypevisor on recent micro-architectures
has to support only 3 contexts: 1) Port I/O, 2) MMIO, and 3) Migra-
tion. Emulation in Real-Mode and Shadow Page Table is not nec-
essary in recent micro-architectures because real-mode in guest-
mode is allowed and EPT (extended page table) is supported for
second level address translation.

Second, a legitimate subset of instructions is very limited that
is allowed to be emulated in each emulation context; arbitrary in-
structions should be emulated in every emulation context. For ex-
ample, an MMIO region is accessed only by memory-accessing in-
structions; it is not legitimate to jump into an MMIO region or to
invoke sysenter on an MMIO region. If the instructions not legit-
imate in the current emulation context are filtered out, the attack
surface is narrowed; an attacker can exploit a vulnerability in the
instructions that are legitimate in the current context.

By narrowing the attack surface, FWinst is expected to prevent
an attacker from exploiting vulnerabilities in instruction emula-
tion. Since only the memory-accessing instructions are legitimate
in MMIO context, it is impossible to force the emulation of vul-
nerable sysenter, far jump, and far ret through the MMIO
region. On recent micro-architectures, a legitimate set of instruc-
tions does not include legacy, rarely-used instructions. In addition,
it would be easier to maintain the emulation code and verify its
correctness because the number of legitimate instructions is much
smaller than that of the entire instructions. This would enhance
the overall safety of the instruction emulator.

Table 1: Summary of Emulation Contexts and Legitimate Set
of Instructions.

Emulation Context Legitimate
Context Identification Instructions
PIO I/O instruction in, out
MMIO EPT violation mov, movsx

or EPT misconfig stosx, or
Shadow page table Exception or NMI (#PF) memory access

instructions
Real mode VCPU status all real-mode

(No VMExit) instructions
Migration Exception or NMI (#UD) vmcall, vmmcall

syscall, sysenter
sysexit, rsm, movbe

3 DESIGN AND IMPLEMENTATION
The vulnerability analysis in Section 2 suggests the attack surface
against the instruction emulator can be narrowed if the emulation
context is taken into account. This section describes the design
and implementation of FWinst, which filters out instructions that
should not be emulated in the current emulation context.

3.1 Overall Architecture
Figure 1 b) illustrates the overall architecture of FWinst. FWinst re-
sides in the hypervisor between VMExit handlers and the instruc-
tion emulator. When a VMExit handler is invoked and needs the
instruction emulation, it invokes FWinst and passes it the VMExit
reason. It tells the hypervisorwhat event has happened in the guest
VM and provides a good clue to estimate the emulation context.
If FWinst cannot determine the emulation context only from the
VMExit reason, it collects more pieces of information from the in-
ternal states managed by the hypervisor.

To determine which instruction should be emulated in each em-
ulation context, FWinst maintains a list of legitimate instructions
for each context. This list is constructed in advance. For some con-
texts, it is straightforward to define the legitimate set of instruc-
tions. For other contexts, some engineering efforts are needed to
determine the legitimate set. Section 3.3 describes the approach
FWinst has taken to determine the legitimate set.
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3.2 Identifying Emulation Contexts
Table 1 shows the summary of the emulation contexts identified
in FWinst. FWinst identifies five contexts: 1) Port I/O, 2) MMIO, 3)
shadow page table, 4) real mode, and 5) migration.

Port I/O context. It can be identified directly from theVMExit
reason. When a guest OS makes an access to an I/O port, it incurs a
VMExit with the reason set to ‘I/O instruction’. FWinst determines
the current context is Port I/O from the VMExit Reason.

MMIO context. It is identified by confirming a VMExit oc-
curs due to an access to an MMIO region. When a guest OS makes
an access to anMMIO region, the faulting address is notified. FWinst
confirms the faulting address fits in the MMIO region. The detailed
behavior differs depending on the configuration of the hypervisor.
If the EPT feature is turned on, the VMExit reason is set to ‘EPT
Violation/Misconfiguration’. If the EPT feature is unavailable or
turned off, the VMExit reason is set to ‘Exception or Non-maskable
interrupt (#PF)’. In both cases, if the faulting address resides in an
MMIO region, FWinst concludes the context is MMIO.

There are two things to be noted. First, when thememory-mapped
APIC (Advanced Programmable Interrupt Controller) is accessed,
an VMExit with ‘APIC Access’ occurs. In this case, FWinst con-
cludes the current context is MMIO. Second, the hypervisor some-
times — e.g., for host swapping — intentionally configures EPT en-
tries or shadow page tables to cause VMExits on the access to a
certain page. In this case, the hypervisor does not invoke FWinst
because it requires only the faulting address for processing the
VMExits.

Shadow page table context. If the EPT feature is not avail-
able, the shadow page table context is identified with the cooper-
ation of the hypervisor. Since the hypervisor knows the memory
locations of guest page tables, FWinst concludes that the current
context is the shadow page table context if the faulting address fits
in the guest page tables.

Real mode context. If the unrestricted guest mode is not
available, the real-mode code is executed either in virtual 8086
mode or on the emulator. If this is the case, the hypervisor main-
tains a global state that tells the emulation for real-mode is re-
quired or not. FWinst checks the global state to determine the cur-
rent emulation context.

Migration context. If an unsupported instruction is executed
in a guest, a VMExit occurs with the reason set to ‘Exception or
Non-maskable interrupt (#UD)’. Encountering this VMExit reason,
FWinst concludes the current context is migration. At first glance,
this strategy looks dangerous because any vendor-specific instruc-
tions are emulated without further inspection. Since the number
of legitimate instructions in the migration context is very limited,
FWinst carefully inspects the instructionmodes and rejects the em-
ulation later in the verification phase.

3.3 Legitimate Instructions
For each emulation context, a set of legitimate instructions are de-
fined. Table 1 shows the summary of the legitimate set of instruc-
tions for each context. For PIO context, it is straightforward to de-
fine the set; the family of in and out instructions because I/O ports
are accessed only through them.

For MMIO context and shadow page table context, the legiti-
mate set of instructions is memory-accessing instructions; i.e, in-
structions having memory-access operands. If the operating sys-
tems hosted on the hypervisor are known in advance, their coding
conventions can be leveraged to further restrict the legitimate set.
For example, the hosted operating systems are known in advance
in the PaaS (Platform-as-a-Service) environments.

The coding conventions can be utilized as follows. For MMIO
context, since an MMIO region is accessed from device drivers, the
legitimate set can be derived from in-kernel functions ormacros ex-
ported for device drivers. Memory-accessing instructions that do
not appear in the compiled macros or functions can be removed
from the legitimate set. For example, Linux provides readl and
writelmacros forMMIO accesses.Windows provides READ_REGISTER_UCHAR
and WRITE_REGISTER_UCHAR functions for MMIO accesses. For the
shadow page table context, all the functions that update page ta-
bles must be investigated to restrict the legitimate set.

For the real mode context, it is almost impossible to define a
small set of legitimate instructions because real-mode code can ex-
ecute a bunch of instructions during the boot sequence. Currently,
FWinst includes all the instructions valid in real mode in the legit-
imate set. To avoid attacks during the boot sequence, it is better
to load a virtual machine image after the boot sequence (i.e., CPU
in protected mode), which has been built in an isolated and secure
environment.

For the migration context, vendor-specific instructions must be
emulated. KVM/QEMU lists up all the vendor-specific instructions:
vmcall, vmmcall, syscall, sysenter, sysexit, rsm, and movbe.
The legitimate set changes depending on the vendors and micro-
architectures of physical CPUs. Since it is nonsense to emulate
natively supported instructions, the legitimate set includes the in-
structions that are not supported natively on the physical CPUs.

3.4 Implementation
Aprototype of FWinst has been implemented on LinuxKVM (Linux
Kernel 4.8) for Intel x86-64 architecture. We assume the micro-
architectures posterior to Westmere, and the full-fledged features
(EPT and unrestricted guest mode) for virtualization are enabled.
Westmere was released around 2010 and thus, it is natural to as-
sume Westmere micro-architecture or later.

The current prototype identifies PIO, MMIO, and migration con-
texts. Shadow page table or real mode contexts are not recognized
because the EPT feature and the unrestricted guest mode are en-
abled. For MMIO context, the legitimate set is restricted, assum-
ing that the guest operating systems are Linux or Windows. Since
BIOS makes an access to an MMIO region, we took execution logs
of BIOS to elaborate the set. As a result, the legitimate set for
MMIO includes the family of MOV, MOVSx, STOSx, and OR. For Migra-
tion context, our current implementation includes the instructions
specific to AMD (vmmcall) and supported on later Intel micro-
architectures (movbe). Currently, rsm is also included in the set.

In contexts other than migration, FWinst needs only the opcode
of an emulated instruction. To avoid duplicated implementation of
instruction decoders, FWinst lets the instruction emulator decode
each instruction. This design allows us to reuse the instruction de-
coder, and releases us from maintaining two decoders (the one in
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Table 2: Experimental Environment

Host OS Linux Kernel 4.8.1
Host QEMU Version 2.9.50
Host CPU Intel Westmere Xeon X5650 2.67 GHz
Host memory 4 GB
Guest OS Ubuntu 16.10 x86_64
# of VCPUs 2
Guest memory 1 GB

Table 3: Summary of vulnerabilties

CVE # vul. inst. Intel AMD
2014-3647 far jump or far ret

√ √

2014-8480 clflush, hint-nop, prefetch
√ √

2014-8481 movbe d d
2015-0239 sysenter

√
d

2016-8630 illegal instruction
√ √

2016-9756 far jump or far ret
√ √

2017-2583 mov SS
√ √

2017-2584 fxrstor, fxsave, sgdt, sidt
√ √

d: depends on migration contexts

the instruction emulator and the other in FWinst). After the in-
struction emulator finishes decoding the opcode, the opcode is no-
tified to FWinst and FWinst filters it out if the instruction is not in
the legitimate set. Note that FWinst does not rely on the operand
decoder, which is more complicated and more vulnerable than the
opcode decoder; even if there is a vulnerability in the operand de-
coder, FWinst works properly.

4 EXPERIMENTS
To demonstrate the effectiveness of FWinst, we have implemented
an early prototype of FWinst on Intel x86Westmeremicro-architecture.
In the following analysis and experiments, all the CPU support
for virtualization is turned on; i.e, EPT and the unrestricted guest
mode are both turned on. Table 2 shows the experimental environ-
ment.

4.1 Security Analysis
To demonstrate the effectiveness of FWinst, we have investigated
20 vulnerability reports from 2009 to 2017 that are related to em-
ulation of instructions, and confirmed FWinst would prevent the
emulation by the instruction emulator of all the vulnerable instruc-
tions onHaswell (later thanWestmere) micro-architecture because
those instructions are not included in any legitimate set of instruc-
tions of any emulation contexts. This result does not imply FWinst
can defend against all vulnerabilities in the emulator. Since FWinst
simply narrows the attack surface, it cannot defend against vulner-
abilities in the instructions in the legitimate set.

For detailed discussion, we have chosen eight vulnerabilities
which are emulated by the instruction emulator listed in Table 3.
For these vulnerabilities we have collected or implemented PoC
(proof-of-concept) code and tested it on FWinst. As you can see
from Table 3, FWinst can defend against 7 vulnerabilities out of 8

on Intel Westmere micro-architecture (indicated by
√

in column
’Intel’), and 6 out of 8 on AMD (indicated by

√
in column ’AMD’).

CVE-2014-8481, which is marked as ’depends’ in both Intel and
AMD, is about the emulation of movbe instruction, which has been
introduced in Haswell (later than Westmere). If FWinst recognizes
a guest is running binary for Westmere, FWinst rejects the emula-
tion of movbe because it is strange that Westmere binary is execut-
ing unsupported movbe. But if the guest is migrated from another
machine and runs binary for Haswell, FWinst emulates movbe on
Westmere; the vulnerability can be exploited.

Since movbe is an Intel-specific instruction, FWinst running on
AMD rejects the emulation of movbe if it recognizes the guest is
running binary for AMD. But if the guest is migrated from another
machine and runs binary for Intel, FWinst onAMDemulates movbe
because movbe is included in the legitimate set of instructions for
Migration context. Vulnerable movbe can be exploited in this case.

Column ’AMD’ is marked as ’depends’ in Table 3 in CVE-2015-
0239. Since sysenter is an Intel-specific instruction, FWinst run-
ning on Intel rejects the emulation of this instruction because there
is no need to natively supported instructions. But the situation is
subtle if this instruction is executed in guest on AMD. If FWinst
recognizes the guest is running binary for AMD, FWinst rejects
the emulation because it is strange that AMD tries to execute un-
supported instruction. But if the guest is migrated from another
machine and runs binary for Intel, FWinst emulates sysenter on
AMD and the vulnerability can not be avoided.

Mov SS in CVE-2017-2583 is an instruction that loads or stores
the stack segment register. Although this instruction looks like a
memory-accessing instruction, it is excluded from the legitimate
set for MMIO context because the segment registers are not loaded
from or stored to MMIO regions. FWinst running on Intel or AMD
CPUs reject the emulation and prevents this vulnerability from be-
ing exploited.

CVE-2016-8630 is about the emulation of illegal instructions. If
a guest executes an illegal instruction, the VMExit handler for il-
legal instructions is invoked and it is determined in the handler if
the emulation is necessary or not. If an adversary uses the timing
attack introduced in Figure 2, the VMExit handler for illegal in-
structions is bypassed. KVM emulator tries to emulate the illegal
instruction, which results in the exploitation of the vulnerability.
Before invoking the emulator, FWinst checks the legitimate set of
instructions for the illegal instruction, and rejects the emulation
because it is not in the current legitimate set.

4.2 Runtime Overhead
To estimate runtime overhead introduced by FWinst, we measure
the runtime of several standard benchmarks: UnixBench [3], Apache
Bench [1] and sysbench [2]. Figure 3 shows the relative perfor-
mance. Overall, FWinst introduces the overhead less than about
2.5%.

5 RELATEDWORK
Testing The Hypervisor. Virtual CPU Validation [4] takes ad-
vantage of Intel’s testing facilities to look for security vulnerabili-
ties in KVM. Over half of the 117 bugs they discovered are instruc-
tion emulator bugs, five of which are security vulnerabilities. To
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Figure 3: Normalized performance of UnixBench, Apache
Bench and sysbench with the original KVM as the baseline

exploit vulnerabilities in instruction emulators, a new attack vec-
tor is shown to force the emulator to emulate arbitrary instructions
at any time.

Hardening Hypervisors. Conceptually, FWinst is similar to
network firewalls. A network firewall narrows the attack surface
against vulnerable servers and clients inside the firewall. While
many techniques are developed and deployed to harden servers
and clients in general, network firewalls are still useful to reduce
the risk of exposing vulnerable servers and clients. FWinst reduces
the risk of exposing vulnerable emulation of instructions, and al-
lows us to get rid of the emulation of legacy and intricate instruc-
tions. Nioh [10] is conceptually similar to FWinst. It is a firewall
for virtual devices that filters out suspicious requests to virtual de-
vices.

Aside from the approach like FWinst, there are many research
efforts to harden the hypervisors against general attacks. These
approaches can be used together with FWinst. Since none of these
approaches can eliminate all the security threats, FWinst reduces
the risk of exposing security holes lurking in the emulator that spill
out of the state-of-the-art protection.

Monitoring hypervisors at runtime is a promising approach to
improve the security of hypervisors. DancingwithWolves [6]mon-
itors untrusted hypervisors from a secure event-driven monitor.
HyperSafe [16] and HyperVerify [7] provide runtime protection
for hypervisors.

Another approach to hardening hypervisors is to reduce TCB
(trusted computing base) in the hypervisor. Min-V [9] disables all
unnecessary virtual devices when running VMs in the cloud. No-
Hype [14] eliminates the virtualization layer at runtime, and each
VMdirectly runs on statically assigned resources. NOVA [13] takes
a microkernel approach to achieving a smaller TCB. Deconstruct-
ing Xen [12] divides Xen’s privileged code into per-VM slices, and
confines the attacks inside the slices. HyperLock [17] prepares a
shadow hypervisor for each VM and provides runtime isolation
for the privileged host. DeHype [18] demotes KVM to user mode
and runs it as a per-VM deprivileged hypervisor.

6 CONCLUSION
The contribution of this paper is that the attack surface against
vulnerabilities in the emulator can be narrowed, if the underlying
micro-architecture and the hypervisor configuration are taken into
account. FWinst identifies a legitimate set of instructions by recog-
nizing emulation contexts, and filters out illegitimate instructions,
thereby narrowing the attack surface. Our preliminary evaluation
shows FWinst effectively prevents emulator vulnerabilities from

being exploited on Westmere micro-architecture, and the runtime
overhead is less than 2.5% on widely-used benchmarks.

For future directions, it would be interesting to divide emulation
contexts into the finer ones and prune a legitimate set of instruc-
tions for each fine-grained context. In particular, if FWinst is in-
stalled in PaaS (Platform-as-a-Service) clouds, the hypervisor can
make more assumptions on guest operating systems, which would
enable us to prepare fine-tuned contexts for each guest operating
system. This would enhance the protection against vulnerable em-
ulators.

ACKNOWLEDGEMENT
This work is partially supported by Japan Science and Technol- ogy
Agency (JST CREST JPMJCR1683).

REFERENCES
[1] 2017. ab - Apache HTTP server benchmarking tool. https://httpd.apache.org/

docs/2.4/programs/ab.html. (2017).
[2] 2017. sysbench. https://github.com/akopytov/sysbench. (2017).
[3] 2017. Unix Bench. https://github.com/kdlucas/byte-unixbench. (2017).
[4] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran Shlomo.

2015. Virtual CPU Validation. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (SOSP ’15). ACM, New York, NY, USA, 311–327. https:
//doi.org/10.1145/2815400.2815420

[5] Andrea Arcangeli. 2008. Using Linux as Hypervisor with KVM. https://indico.
cern.ch/event/39755/attachments/797208/1092716/slides.pdf. (2008).

[6] Liang Deng, Peng Liu, Jun Xu, Ping Chen, and Qingkai Zeng. 2017. Dancing
with Wolves: Towards Practical Event-driven VMM Monitoring. In Proceedings
of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’17). ACM, New York, NY, USA, 83–96. https://doi.org/10.
1145/3050748.3050750

[7] Baozeng Ding, Yeping He, Yanjun Wu, and Yuqi Lin. 2013. HyperVerify: A VM-
assisted Architecture for Monitoring Hypervisor Non-control Data. In Proceed-
ings of the 2013 IEEE Seventh International Conference on Software Security and
Reliability Companion (SERE-C ’13). IEEE Computer Society, Washington, DC,
USA, 26–34. https://doi.org/10.1109/SERE-C.2013.20

[8] KVM. 2016. KVM. http://www.linux-kvm.org/page/Main_Page. (2016).
[9] Anh Nguyen, Himanshu Raj, Shravan Rayanchu, Stefan Saroiu, and Alec Wol-

man. 2012. Delusional Boot: Securing Hypervisors Without Massive Re-
engineering. In Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys ’12). ACM, New York, NY, USA, 141–154. https://doi.org/10.
1145/2168836.2168851

[10] Junya Ogasawara and Kenji Kono. 2017. Nioh: Hardening The Hypervisor by
Filtering Illegal I/O Requests to Virtual Devices. In Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC 2017). ACM, New York, NY,
USA, 542–552. https://doi.org/10.1145/3134600.3134648

[11] Paolo Bonzini. 2014. KVM: x86 emulator: emulate MOVAPS and MOVAPD
SSE instructions. Linux Kernel Mailing List. https://lkml.org/lkml/2014/3/17/384.
(2014).

[12] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu Zang,
Haibing Guan, and Jinming Li. 2017. Deconstructing Xen. In The Network and
Distributed System Security Symposium 2017 (NDSS ’17).

[13] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-based
Secure Virtualization Architecture. In Proceedings of the 5th European Confer-
ence on Computer Systems (EuroSys ’10). ACM, New York, NY, USA, 209–222.
https://doi.org/10.1145/1755913.1755935

[14] Jakub Szefer, Eric Keller, Ruby B. Lee, and Jennifer Rexford. 2011. Eliminating
the Hypervisor Attack Surface for a More Secure Cloud. In Proceedings of the
18th ACMConference on Computer and Communications Security (CCS ’11). ACM,
New York, NY, USA, 401–412. https://doi.org/10.1145/2046707.2046754

[15] Xenproject.org Security Team. 2017. Xen Security Advisory. https://xenbits.xen.
org/xsa/. (2017).

[16] Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Pro-
vide Lifetime Hypervisor Control-Flow Integrity. In IEEE Symposium on Security
and Privacy. IEEE, 380–395. https://doi.org/10.1109/SP.2010.30

[17] Zhi Wang, Chiachih Wu, Michael Grace, and Xuxian Jiang. 2012. Isolating Com-
modity Hosted Hypervisors with HyperLock. In Proceedings of the 7th ACM Eu-
ropean Conference on Computer Systems (EuroSys ’12). ACM, New York, NY, USA,
127–140. https://doi.org/10.1145/2168836.2168850

[18] Chiachih Wu, Zhi Wang, and Xuxian Jiang. 2013. Taming Hosted Hypervisors
with (Mostly) Deprivileged Execution.. InNDSS (NDSS ’13). The Internet Society.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/akopytov/sysbench
https://github.com/kdlucas/byte-unixbench
https://doi.org/10.1145/2815400.2815420
https://doi.org/10.1145/2815400.2815420
https://indico.cern.ch/event/39755/attachments/797208/1092716/slides.pdf
https://indico.cern.ch/event/39755/attachments/797208/1092716/slides.pdf
https://doi.org/10.1145/3050748.3050750
https://doi.org/10.1145/3050748.3050750
https://doi.org/10.1109/SERE-C.2013.20
http://www.linux-kvm.org/page/Main_Page
https://doi.org/10.1145/2168836.2168851
https://doi.org/10.1145/2168836.2168851
https://doi.org/10.1145/3134600.3134648
https://lkml.org/lkml/2014/3/17/384
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/2046707.2046754
https://xenbits.xen.org/xsa/
https://xenbits.xen.org/xsa/
https://doi.org/10.1109/SP.2010.30
https://doi.org/10.1145/2168836.2168850

	Abstract
	1 Introduction
	2 Threat Model and Vulnerability Analysis
	2.1 Treat Model
	2.2 Vulnerability Analysis

	3 Design and Implementation
	3.1 Overall Architecture
	3.2 Identifying Emulation Contexts
	3.3 Legitimate Instructions
	3.4 Implementation

	4 Experiments
	4.1 Security Analysis
	4.2 Runtime Overhead

	5 Related Work
	6 Conclusion
	References

